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1 Introduction

The GermanTeam participates as a national team in the Sony Legged Robot
League. It currently consists of students and researchers from the following four
universities: the Humboldt-Universität zu Berlin, the Universität Bremen, the
Technische Universität Darmstadt, and the Universität Dortmund. The mem-
bers of the GermanTeam participate as individual teams in contests such as the
RoboCup German Open, but jointly line up as a national team for the interna-
tional RoboCup World Cup. To support this cooperation and concurrency, the
GermanTeam introduced an architecture that provides mechanisms for parallel
development [1]. The entire information processing and control of the robot is
divided into modules (cf. fig. 1) carrying out specific tasks using well-defined in-
terfaces. For each module, many different solutions can be developed which can
be switched at runtime. This approach allows for easily comparing and bench-
marking the solutions developed for the various tasks. It is used since the fall of
2001 and has been proven to be a very useful tool for development. In 2004, the
only two newcomers in the Sony Four-Legged Robot League (Dutch Aibo Team
and Hamburg Dogbots) will also be based on this architecture.

This paper gives an overview on the work done by the four sub-teams of the
GermanTeam (Aibo Team Humboldt, Darmstadt Dribbling Dackels, Bremen
Byters, and Microsoft Hellhounds) in the past year that is currently combined
to form the code of the GermanTeam 2004. Further information can be found in
this year’s contributions of members of the GermanTeam to the RoboCup book:
they deal with automatic color calibration [2], object recognition [3], obstacle
avoidance [4] (cf. Sect. 3), collision detection [5] (cf. Sect. 4), qualitative world
modeling [6, 7], behavior modeling [8], and gait optimization [9] (cf. Sect. 7).
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Fig. 1. Information processing in the robots of the GermanTeam. Boxes denote mod-
ules, ellipses denote the representations that are needed to exchange information be-
tween the modules.

2 Perception

Image Processing. Porting the code to work on the ERS7 robot has involved
several challenges: the new camera has a lower sensitivity, requiring the use
of a high gain to compensate for the underexposed pictures; worse, the large
radiometric distortion exhibited is a serious issue, with pronounced vignetting
at the image corners, which appear darker and characterized by a strong blue
cast.

The first problem has been addressed by developing a “real time” im-
plementation of a structure-preserving noise reduction filter based on the
S. U. S. A. N. principle [10], which sacrifices certain features like Gaussian
brightness, spatial and frequency response to make use of only fast operations
as look-up, shifting and masking.

To correct the second problem, the distortion has been modeled as the prod-
uct of two polynomial factors, one based on the distance of the pixel from the
center of the image (radial factor), the other dependent on the actual value of
the pixel spectrum to be corrected (brightness factor), as the deviation from
the values at the center of the image has been observed to be dependent on the
actual brightness of the reference.

To derive the coefficients for the correction model, a log file of images of
uniform colors such as blue, yellow, white, recorded from the robot camera is



Fig. 2. Left: the image of a white card captured by the robot camera. Right: the color
corrected image

Fig. 3. The red selection highlights the effect of the distortion (left) and the result of
the correction (right).

processed to estimate the reference value for all the spectra for each color, and
the sum of the squared differences of each pixel in the images from the references
is minimized through simulated annealing.

At last, the barrel distortion induced by the lens geometry has been modeled
with the help of a Matlab toolbox from [11] analyzing images of a checkerboard
taken under different angles; the correction makes use of a 4th order radial-only
model.

Object Recognition. Until now the algorithms analyzing the image highly
rely on the use of manually calibrated color tables. Some efforts have been made
to automatically adapt to different lighting conditions completely without color
tables or at least to generate the color table automatically ([12, 13, 2]). As these
methods in some situations perform not as precise as a manual calibrated vision
system they were not used for the games. However some specialized algorithms,



Fig. 4. The obstacle model as seen from above and projected into the camera image.

such as the detection of the ball could be modified, to be more independent from
the color tables.

Instead of detecting the ball only by scanning for pixels which are classified
as orange by the color table, the modified approach searches for the edges of the
ball, by calculating the alikeness of the color compared to the prototype of a
perfect orange and scanning for a sharp drop of this value. During the manual
color calibration colors which can be seen on the ball but are not strictly orange,
i.e. highlights or shadows, are no longer needed to be classified as orange in
the color table, which proved to be of great benefit preventing the detection of
nonexistent balls, e.g. within the yellow goal or the red jerseys of other robots.

Combined with other optimizations in image processing, like the utilization
of the high resolution images, and especially more sophisticated ball detection
this approach produced more accurate results. Even at a great distance and
being partially concealed by other robots or cut off by image borders the ball
could be detected correctly, i.e. its radius and center point were measured with
a higher accuracy improving the subsequent ball modeling.

3 Obstacle Avoidance

A vision based system is used for obstacle avoidance. An early version of it
was used successfully in the RoboCup 2003 games and in the RoboCup 2003
obstacle avoidance challenge where it won 1st place. The system enables the
robot to detect unknown obstacles and reliably avoid them while advancing
toward a target. It uses monocular vision data with a limited field of view.
Obstacles are detected on a level surface of known color(s). A radial model is
constructed from the detected obstacles giving the robot a representation of
its surroundings that integrates both current and recent vision information 4.
Sectors of the model currently outside the current field of view of the robot are
updated using odometry. The modeling of obstacles bears strong resemblance to
the method called visual sonar which was developed at the same time at CMU
[14].



The obstacle model was improved by not only storing obstacles but also the
type of obstacle that was detected by vision (i.e. field borders, goals, players).
This information can be used to determine where the robot should play the ball
(e.g. in the direction of a player of the own team).

Furthermore the algorithm was greatly simplified yielding a further perfor-
mance improvement. A detailed description can be found in [4].

4 Collision Detection

In the case that obstacle avoidance fails or is impossible (e.g. when walking
sideways or while the robot is turning), detecting collisions is advantageous.
Collision detection can be used to improve localization. If a collision occurs
or the robot cannot move freely, odometry will not correctly reflect the actual
motion of the robot anymore. Detecting such incidents can help determining the
quality of odometry. Furthermore, detecting collision can used to allow the robot
to trigger motions to free it from other robots charging at it.

Collision detection was implemented based on the comparison of sensor read-
ings (actual motion) to actuator commands (intended motion). Ways of detecting
such incidents were investigated using just the sensor readings from the servo
motors of the robot’s legs. It was found that comparison of motor commands
and actual movement (as sensed by the servo’s position sensor) allowed the robot
to reliably detect collisions and obstructions. Minor modifications to make the
system more robust enabled it to be used in the RoboCup domain, allowing
the system to cope with arbitrary movements and accelerations apparent in this
highly dynamic environment. Strong emphasis was put on keeping the process
of calibration for different robot gaits simple and manageable. The algorithms
where originally developed for the Sony ERS-210 where it was possible to reliably
detect collisions [5]. The algorithm was ported to work with the new Aibo ERS-7
which proved to be a difficult task because of the largely different hardware.

5 Behavior Control

For behavior engineering, the GermanTeam continued to use the Extensible
Agent Behavior Specification Language (XABSL) [15, 16]. Only minor changes
were made in the XABSL language and system itself. Also the high level behav-
iors were only slightly changed from 2003. Much work was done on smoother
ball handling behaviors including dribbling, kick selection, and navigation, as
described below.

Ball Handling. The main goal was to develop a behavior that handles the ball
as fast as possible. First a behavior was implemented that plays the ball without
any kicks—the robot just runs into the ball. To dribble the ball to the left or to
the right the robot performs a short turn when it approaches the ball. To bring
the ball behind itself, the robot catches the ball with the head, turns around and
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Fig. 5. The ball handling part of the XABSL option graph. More complex options
(boxes) are each combined from simpler options and basic behaviors (ellipses).

releases the ball at an appropriate angle by lifting its head. In a second step kicks
were added to the robot’s behavior. If the ball is by chance in a good position
while the robot approaches it, a convenient kick is performed. The fundamental
idea is that the behavior can react in the majority of situations that might occur
(relation between the robot and the ball) and does not try to cause situations
where it has a reaction ready.

Kick Selection. Kicking fast and precisely is crucial when playing robot soccer.
Thus, about 50 different kicks were developed, suitable for almost all situations
that can happen during a match. Thus a large amount of specialized kicks re-
quires an evaluation function to select which kick should be used in a certain
situation. Developing such a function by hand and fine-tune its parameters is
a time consuming process. Instead, a semi-autonomous teach-in mechanism was
developed. Thereto, a robot stands on the playing field and kicks the ball sev-
eral times. Meanwhile, the starting position and the final position of the ball
are measured relative to the robot. The distribution of the final positions is es-



Fig. 6. A potential field describing the behavior of an offensive supporter (blue rect-
angle). While a teammate (blue circle) approaches the ball, the robot moves to an
obstacle-free region near the opponent goal and also avoids blocking a possible kick by
its teammate.

timated, and its variance is computed. Thus, it is possible to estimate an angle
and distance to the final position depending of the starting position of the ball
in each situation of the game.

Potential Fields for Navigation. Artificial potential fields, originally devel-
oped by [17], are a quite popular approach in robot motion planning, because of
their capability to act in continuous domains in real-time. By assigning repulsive
force fields to obstacles and an attractive force field to the desired destination,
a robot can follow a collision-free path via the computation of a motion vector
from the superposed force fields. Instead of the Continuous Basic Behaviors,
which have previously been used by the German Team for this kind of robot
navigation [18], the potential field architecture by [8] will be used for several
navigation tasks during the upcoming competitions. Figure 6 shows an example.

The approach combines a variety of existing techniques in a behavior-based
architecture using the principle of competing independent behaviors [19]. The
specification of the behaviors and the environment is, quite similar to XABSL,
based on external configuration files.

Dynamic Team Tactics. The positioning of the robots and their cooperation is
the basis of efficient team-play. Therefore, it is suggested extending the XABSL-



behavior by a meta-layer that helps to represent the dynamics of the game
and environment – the Dynamic Team Tactics (DTT). The DTT is based on
a communicated world model. Thus, each robot knows about the position and
information of all team members. First, all robots estimate what task would
be appropriate to solve the actual situation. Then, they compute which task is
the most preferable (highest chance of success – COS) for their own to execute.
Finally, the robot executes the task with the highest COS-value.

This approach leads to the problem of evaluating the position and prospect
of success for every robot and each task. By now, these values are tuned by hand.
In the next year, it will be investigated in adjusting the values automatically by
a training scheme.

6 Active Vision

In the games in Fukuoka, active vision was used to actively search for landmarks
when chasing the ball. With the introduction of the obstacle model, the approach
was no longer pursued since it seemed to make more sense to scan the area around
the robot. Now, it is returned to an approach that allows for directed vision while
also gathering information needed for the obstacle model.

If the robot is looking at the ball, its gaze direction is optimized to also
look at the next landmarks while keeping the ball within its field of view. The
beacons on the field and the field markings are considered landmarks. If it is
impossible to see the ball and landmarks at the same time, the position of the
closest landmark is calculated and the robot quickly verifies its localization by
looking at such a landmark. (In the case of a badly localized robot, such a quick
look usually yields enough information for the localization to recover.) The need
for wide scanning motion of the head is lessened by making sure that the robot
is walking forward most of the time. This approach enables the robot to more
closely track the ball.

7 Motion Modeling and Gait Evolution

To generate the walk motions of the robot, the GermanTeam uses a walking en-
gine based on inverse kinematic calculations. The walking engine is very flexible
since the resulting walk depends on a huge number of parameters. With the cur-
rent implementation of the walking engine, it is possible to change the parameter
set during runtime, such that the appropriate walk can be observed immediately.
In general, different walking parameters result in different walking styles with
different speeds. The task to find a fast and effective parameter set describing
the walk becomes more and more difficult with an increasing number of parame-
ters. Finding the fastest possible walk using a walking engine with n parameters
means to find the representation of the fastest walk in an n-dimensional search
space. For a large number n this is not feasible by trying different parameter
combinations by hand. Two different approaches to optimize the gait parameters
were used in the GermanTeam:



Localization-Based Fitness. A basic approach to find a parameter set result-
ing in a fast walking pattern is to use a simple (1 + 1) evolution strategy [20]
for the optimization process. An individual is represented by a set of walking
parameters. Its fitness is discovered by measuring the corresponding speed of the
robot while walking on the field. This is done in the following way: At first the
robot walks to a starting position, after arrival it walks with the maximum speed
for a defined time (we used 10 seconds) on the field. After that time the robot
stops, localizes itself and calculates the walked distance and thereby the speed of
the walk. To reduce measurement errors, the robot measures the walking speed
three times and uses the median of the measured speeds. Due to the reliable
self-localization of the robots the measurement of speed and therefore the com-
plete evolution process can be done fully autonomously. Therefore, it is possible
to adapt the walking parameter set to the actual environmental conditions (e.g.
carpet).

Odometry-Based Fitness. The other approach to gait optimization employs
a probabilistic evolution scheme [9]. It separates the typical crossover-step of
the evolutionary algorithm into an interpolating step and an extrapolating step,
which allows for solving optimization problems with a small population, which
is an essential for robotics applications. In contrast to other approaches, real
odometry is used to assess the quality of a gait. The motion of the robot is
estimated from the trajectories of the rear legs while they have contact to the
ground. The main advantage is that gaits can be assessed very quickly (every 5
seconds a new one), so learning is very fast. The only drawback of this approach
is that it can only learn gaits in which the ground contact sensors of the rear feet
touch the ground. With this approach, a maximum forward speed of 40 cm/sec
and a turning speed of 195◦/sec were reached.

8 RobotControl

In recent years, the GermanTeam has developed a big variety of tools that sup-
port the development process. Amongst them, RobotControl is a very general
debug tool for the work with the Aibos. This extensive and complex debugging
tool (cf. Fig. 7) evolved over the years together with the software architecture
of the GermanTeam. First, it is a viewer for almost all intermediate steps of in-
formation processing on the robots. It can connect via WLAN to up to 8 robots
and display representations, internal data from modules, and even single draw-
ings from within the algorithms. Second, the highly modular structure allows the
developers to easily plug in graphical user interfaces for testing single modules
separately. Third, it includes the simulator SimRobot which simulates up to 8
Aibos for testing algorithms offline. For that, the complete source code running
on the robots is compiled and linked into RobotControl. At last, it hosts a variety
of general tools, e.g. for color calibration or walk evolution.

From 2003, the modularization of the program was clarified, a possibility for
direct TCP communication with the Aibos was implemented, and many new



Fig. 7. A screen shot of one of the many possible configurations of RobotControl.

graphical interfaces were added to the application. In addition, a new, OpenGL-
based version of SimRobot (cf. Fig. 8) was developed that has not been integrated
yet in RobotControl. This new version is currently enhanced by the ability to
simulate the physics of the robots and the environment.

9 Conclusion and Future Work

The GermanTeam has spent a lot of time on porting the code to the ERS-7.
The new camera required some calibration to compensate for the color distor-
tion. Collision detection was developed and the behavior was fine tuned. Many
efforts have been made within the GermanTeam to generate new gaits for the
new Aibo ERS-7. The most successful one was found using genetic optimization
and achieved very high speeds, another is also quite fast and still allows per-
forming omni-directional motion. Since these gaits are highly optimized for a
specific task, it is challenging to maintaining good overall performance and pre-
dictability. This will be achieved by interpolating between different gaits and by
automated calibration of odometry. The calibration process will measure odome-
try for all possible speeds and combinations of motions yielding highly accurate,
predictable robot locomotion.



Fig. 8. The new OpenGL-based simulator SimRobot XP.
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