
GermanTeam 2003

Thomas Röfer1, Ingo Dahm2, Uwe Düffert3, Jan Hoffmann3, Matthias Jüngel3,
Martin Kallnik4, Martin Lötzsch3, Max Risler4, Max Stelzer4, and Jens Ziegler5

1 Bremer Institut für Sichere Systeme, Technologie-Zentrum Informatik, FB 3,
Universität Bremen, Postfach 330 440, 28334 Bremen, Germany

2 Lehrstuhl für Systemanalyse, FB Informatik, University of Dortmund,
Joseph-von-Fraunhofer-Strasse, 44221 Dortmund, Germany

3 Institut für Informatik, LFG Künstliche Intelligenz, Humboldt-Universität zu
Berlin, Rudower Chaussee 25, 12489 Berlin, Germany

4 Fachgebiet Simulation und Systemoptimierung, FB 20 Informatik, Technische
Universität Darmstadt, Alexanderstraße 10, 64283 Darmstadt, Germany

5 Lehrstuhl für Datenverarbeitungssysteme, FB Elektrotechnik und Informations-
technik, University of Dortmund, Otto-Hahn-Strasse 4, 44221 Dortmund, Germany

http://www.robocup.de/germanteam

germanteam@informatik.hu-berlin.de

1 Introduction

The GermanTeam participates as a national team in the Sony Legged Robot
League. It currently consists of students and researchers from the following four
universities: the Humboldt-Universität zu Berlin, the Universität Bremen, the
Technische Universität Darmstadt, and the Universität Dortmund. The members
of the GermanTeam participate as separate teams in the national contests such
as RoboCup German Open, but jointly line up for the international RoboCup
championship as a single team. To support this cooperation and concurrency, the
GermanTeam introduced an architecture that provides mechanisms for parallel
development [1]. The entire information processing and control of the robot
is divided into modules that have well-defined tasks and interfaces. For each
module, many different solutions can be developed. Solutions for a module can
be switched at runtime. Currently, for most modules various solutions exist.
Approaches to a problem can thereby easily be compared and benchmarked.

This paper gives a brief overview of the work done in the past year. A de-
tailed description of the entire system used in the competition—including its
underlying architecture—can be found at [2].

2 Vision

The vision module determines so-called percepts from the images taken by the
robot’s camera. Percepts are the position of the ball, the field lines, the goals,
the flags, the other players, and the obstacles, all given in an egocentric frame
of reference.



a) b)

Fig. 1. Obstacles Percept. a) An image with an obstacle. Green lines: projection of the
obstacles percept to the image. b) The projection of the image to the ground. Green
lines: obstacles percept.

Goals and flags are represented by four angles. These describe the bounding
rectangle of the landmark (top, bottom, left, and right edge) with respect to the
robot in angular coordinates. Field lines are represented by a set of 2-D points on
a line. The ball position and also the other players’ positions are represented in
2-D coordinates. The free space around the robot is represented in the obstacles
percept that consists of a set of lines described by a near point and a far point on
the ground. The lines describe green segments in the projection of the camera’s
image to the ground. The lines usually start at the image bottom and end where
the green of the ground ends or where the image ends (cf. Fig. 1b). If the part of
the projection of the image that is close to the robot is not green, both points are
identical and lie on the rim of the projection. If the far point is not on the border
of the image, there is an obstacle behind that point. The area between the near
and the far point is free space. It is unknown whether there is an obstacle before
the near point.

The YUV images taken by the camera are processed using the high resolution
of 176 × 144 pixels, but looking only at a grid of less pixels. The idea is that
for feature extraction, a high resolution is only needed for small or far away
objects. In addition to being smaller, such objects are also closer to the horizon
(see below). Thus only regions near the horizon need to be scanned at high
resolution, while the rest of the image can be scanning using a relatively wide
spaced grid.

Grid Construction and Scanning. First the position of the horizon in the
image is calculated (cf. Fig. 2b). The horizon is the line that is parallel to the
field plane, but at the height of the camera. The grid is constructed based on the
horizon line, to which grid lines are perpendicular and in parallel. The area near
the horizon has a high density of grid lines, whereas the grid lines are coarser in
the rest of the image (cf. Fig. 2b).

Each grid line is scanned pixel by pixel from top to bottom. During the scan
each pixel is classified by color. A characteristic series of colors or a pattern of
colors is an indication of an object of interest, e. g., a sequence of some orange
pixels is an indication of a ball; a sequence or an interrupted sequence of pink
pixels followed by a green, sky-blue, yellow, or white pixel is an indication of a



a) b) c)

Fig. 2. Percepts. a) An image and the recognized objects. Dots: pixels on a field line
or a border, Flag: pink above yellow, Goal: One edge inside the image and three edges
that intersect with the image border. Green lines: obstacles percept. b) The used scan
lines. c) Recognition of the flag. Only the gray pixels have been touched by the flag
specialist. The green pixels mark the edges recognized.

flag; an (interrupted) sequence of sky-blue or yellow pixels followed by a green
pixel is an indication of a goal, a sequence of white to green or green to white
is an indication of an edge between the field and the border or a field line, and
a sequence of red or blue pixels is an indication of a player. All this scanning
is done using a kind of state machine; mostly counting the number of pixels of
a certain color class and the number of pixels since a certain color class was
detected last. That way, beginning and end of certain object types can still be
determined although some pixels of the wrong class are detected in between.

Detecting Points on Edges. As a first step toward a more color table in-
dependent classification, points on edges are only searched at pixels with a big
difference of the y-channel of the adjacent pixels. An increase in the y-channel
followed by a decrease is an indication of an edge. If the color above the decrease
in the y-channel is sky-blue or yellow, the pixel lies on an edge between a goal
and the field. The differentiation between a field line and the border is a bit
more complicated. In most of the cases the border has a bigger size in the image
than a field line. But a far distant border might be smaller than a very close field
line. For that reason the pixel where the decrease in the y-channel was found
is assumed to lie on the ground. With the known height and rotation of the
camera the distance to that point is calculated. The distance leads to expected
sizes of the border and the field line in the image. For the classification these
sizes are compared to the distance between the increase and the decrease of the
y-channel in the image. The projection of the pixels on the field plane is also
used to determine their relative position to the robot.

All vertical scan lines are searched for edges between the goals and the field,
because these objects are small and often occluded by robots. In contrast, only
every fourth vertical scan line is searched for edge points on the border or on the
field lines, but also a few horizontal scan lines are searched for these edge types,
because they can appear in vertical direction in the image. As the scanning
algorithm assumes to find the border before the field, which is not always true
for horizontal scanning, the horizontal scan lines are scanned either from left to



right or from right to left by random. If less then three points of a certain edge
type are detected in the image, these points are ignored to reduce noise. If many
more points on field lines than on the border are detected, the points on the
border are dropped, because they are assumed to be misclassified.

Detecting the Ball. For balls, upper and lower points on their boundaries are
detected during scanning. Points on the border of the image are ignored. During
scanning, red pixels below a reasonable number of orange pixels are also treated
as orange pixels, because shaded orange often appears as red. Although only
a single ball exists in the game, the points are clustered before the actual ball
position is detected, because some of them may be outliers on the tricot of a
red robot. To remove outliers in vertical direction, upper points are ignored if
they are below many other lower points in the same cluster, and lower points
are ignored if they are above many other upper points in the same cluster.

If enough points have been found, the center of the ball is determined by
intersecting the middle-perpendiculars. Otherwise, the center is estimated as
the middle between all points found. If the ball is not below the horizon or if the
camera position is not stable because the robot is currently kicking, the distance
to the ball is determined from its radius. Otherwise, the distance is determined
from the intersection of the ray that starts in the camera and points to the center
of the ball with a plane that is parallel to the field, but on the height of the ball
center.

Detecting Flags. All indications for flags found during scanning the grid are
clustered. In each cluster there can actually be indications for different flags,
but only if one flag got more indications than the others, it is actually used.
The center of a cluster is used as a starting point for the flag specialist. It
measures the height and the width of a flag. From the initialization pixel the
image is scanned for the border of the flag to the top, right, down, and left where
top/down means perpendicular to the horizon and left/right means parallel to
the horizon (cf. Fig. 2c). This leads to a first approximation of the size of the
flag. Two more horizontal lines are scanned in the pink part and if the flag has
a yellow or a sky-blue part, two more horizontal lines are also scanned there.
The width of the green part of the pink/green flags is not used, because it is not
always possible to distinguish it from the background. To determine the height
of the flag, three additional vertical lines are scanned. The leftmost, rightmost,
topmost, and lowest points found by these scans determine the size of the flag.

Detecting Goals. A goal specialist measures the height and the width of a
goal. The image is scanned for the borders of the goal from the left to the right
and from the top bottom, where again top/down means perpendicular to the
horizon and left/right parallel to the horizon. To find the border of the goal the
specialist searches the last pixel having the color of the goal. Smaller gaps with
unclassified color are accepted. The maximal size in each direction determines
the size of the goal.



a) b) c)

Fig. 3. Recognition of other robots. a) Several foot points for a single robot are clus-
tered (shown in red and blue). b) Distant robots are still recognized. c) Close robots
are recognized based on the upper border of their tricot (shown in pink).

Detecting Robots. To determine the indications for other robots, the scan
lines are searched for the colors of the tricots of the robots. If the number of pixels
in tricot color found on a scan line is above a certain threshold, it is assumed
that the other robot is close. In that case, the upper border of its tricot (ignoring
the head) is used to determine the distance to that robot (cf. Fig. 3c). As with
many other percepts, this is achieved by intersecting the view ray through this
pixel with a plane that is parallel to the field, but on the “typical” height of a
robot tricot. As the other robot is close, a misjudgment of the “typical” tricot
height does not change the result of the distance calculation very much. As a
result, the distance to close robots can be determined.

If the number of pixels in tricot color found is smaller, it is assumed that the
other robot is further away. In that case, the scan lines are followed until the
green of the field appears (cf. Fig. 3a, b). Thus the foot points of the robot are
detected. From these foot points, the distance to the robot can be determined by
intersecting the view ray with the field plane. As not all foot points will actually
be below the robot’s feet (some will be below the body), they are clustered and
the smallest distance is used.

Detecting Obstacles. While the scan lines are scanned from top to bottom, a
state machine determines the last begin of a green section. If this green section
meets the bottom of the image, the begin and the end points of the section are
transformed to coordinates relative to the robot and written to the obstacles
percept; else or if there is no green on that scan line, the point at the bottom
of the line is transformed and the near and the far point of the percept are
identical. Inside a green segment, an interruption of the green that has the size
of 4 · widthfieldline is accepted to assure that field lines are not misinterpreted
as obstacles (widthfieldline is the expected width of a field line in the image
depending on the camera rotation and the position in the image).

3 New Approaches to Color Classification

Many image processing approaches in the color labeled RoboCup domain utilize
a static color table to color segment the camera image, e. g. the one that was



Fig. 4. Color classification of two camera images (left) as done by a conventional YUV-
approach (middle) compared with an optimized classification (right)

still used by the GermanTeam in RoboCup 2003. Creating such a color table is
a time consuming, tedious job. Furthermore, a color table created for a certain
lighting situation will produce unsatisfactory results when lighting conditions
change.

Therefore, the GermanTeam has laid the foundation for new approaches to
color classification. On the one hand, we developed an evolutionary chrominance-
space optimization: Starting from the TSL-chroma space, we evolve an optimized
transformation, such that the main colors (green, pink, yellow etc.) are located
in easy-to-separate subspaces [3]. This reduces the algorithmic complexity of
color segmentation and improves classification accuracy significantly, since the
evolved chrominance space is robust against luminance variation (cf. Fig. 4).

A different approach utilizes a qualitative color table where colors are labeled
with respect to a reference color [4]. The reference color is calibrated using simple
geometric heuristics in the camera image (cf. Fig. 5). We use green as a reference
color because it is found in all images. The color calibration is done in real
time providing the vision system with auto-adaptation capabilities. In the color
calibration process, simple heuristics are used to ensure that only pixels that
are thought to be green are used; pixels not satisfying these strict conditions
are omitted. The qualitative approach to classify colors means that rather then
segmenting individual pixels, edges are classified. Classification of edges can be
done reliably even when using relatively vague color information. Similar to [5],
only pixels on a grid are classified to increase performance.

a) b) c)
V-channelU-channelY-channel

min

max

top bottom top bottom top bottom
white skyblue green white skyblue green white skyblue green

image 1
image 2

green range image 1
green range image 2

Fig. 5. Images recorded under different lighting conditions with a highlighted scan
line and recognized points (border, field line, goal). a) Day light. b) Artificial light. c)
Intensities of the YUV-channels along the scan line for both images. The gray bars
show the range of green after auto-adaptation for left and right image.



Fig. 6. The obstacle model as seen from above and projected into the camera image.
The robot is in front of the opponent goal.

4 Obstacle Model

In the obstacles model, a radar-like view of the surroundings of the robot is
created. To achieve this, the surroundings are divided into 90 (micro-) sectors.
For each of the sectors the free distance to the next obstacle is stored (see Fig.
6). In addition to the distance, the actual measurement that resulted in the
distance is also stored (in x,y-coordinates relative to the robot). These are called
representatives. Each sector has one representative.

For most applications, the minimum distance in the direction of a single
sector is not of interest but rather the minimum value in a number of sectors.
Usually, a sector of a certain width is sought-after, e. g. to find a desirable direc-
tion free of obstacles for shooting the ball. Therefore, the obstacle model features
a number of analysis functions (implemented as member functions) that address
special needs for obstacle avoidance and ball handling. One of the most fre-
quently used functions calculates the free distance in a corridor of a given width
in a given direction. This can be used to check if there are any obstacles in the
direction the robot is moving in and also if there’s enough room for the robot to
pass through.

The obstacle model is updated using sensor data and robot odometry data.
Good care has to be taken when integrating new sensor data into the model as
is illustrated in Fig. 7. Early versions also used the PSD distance sensor. This
was later omitted because the information gained from the camera image was
more than sufficient.

Obstacle avoidance based on the described model was used in the RoboCup
“Obstacle Avoidance” challenge in which it performed extraordanary well (we
won the challenge). It did, however, prove to be difficult to make good use of
the information in non-static, competitive situations. One example to illustrate
this is the case of two opposing robots going for the ball: in this case, obstacle
avoidance is not desirable and would cause the robot to let the other one move
forward. Studies have to be conducted to find ways of using obstacle avoidance
in a way suitable for the RoboCup environment.



r s t u

obstacle

dobstacle

Fig. 7. The above diagram depicts the robot looking at an obstacle. The robot detects
some free space in front of it (s) and some space that is obscured by the obstacle (t).
The obstacle model is updated according to the diagram (in this case the distance in
the sector is set to dobstacle unless the distance value stored lies in r).

5 Localization

Already in 2002, the GermanTeam had a robust and precise localization method
based on the famous Monte-Carlo localization approach [6]. For instance, it en-
abled the robots to autonomously position themselves for a kick-off. The method
relies on the recognition of colored landmarks and goals around the field. How-
ever, as there are no colored marks on a real soccer field, the GermanTeam
developed a Monte-Carlo localization approach that is based on the recogni-
tion of edges between the field and lines, goals, and the border. The method
especially takes account of the fact that different types of edges provide differ-
ent information on the robot’s position and that they are seen with variable
frequency. During experiments, in which the position calculated by the robot
were compared to one delivered by an external reference, it proved to reach
an average error of less than 10.5 cm on a continuously moving robot, and it
was able to reach goal positions with an average error of less than 8.4 cm [7].
At RoboCup 2003, the GermanTeam played with a combined self-locator using
both landmarks and edges, resulting in high precision. In addition, a game with-
out colored landmarks used for localization was demonstrated, just before the
RoboCup “Localization” challenge, in which the GermanTeam reached the third
place using the edge-based localization approach.

6 Behavior Control

For behavior control the GermanTeam uses the Extensible Agent Behavior Spec-
ification Language XABSL [8, 9] since 2002 and improved it largely in 2003. For
the German Open 2003, each of the four universities of the GermanTeam used
XABSL for behavior control and continued the behaviors that were developed
by the GermanTeam for Fukuoka. After the German Open 2003 the behaviors
of the teams could easily be merged into a common solution that was continued
until the RoboCup 2003 in Padova.



a) b) c)

goalie

goalie
before
kickoff

goalie
playing

return
to

own
goal

stand

position
inside
goal

kick
go
to

ball

go
to

point

option goalie-playing

stay
in

goal

get
to

ball

position
inside
goal

clear
ball

kick

return
to

goal

go
to

ball

return
to

own
goal

option goalie-playing

state get-to-ball

clear
ball

return
to

goal

get
to

ball

if else

ball
seen

if else-if else

ball.distance
< 15 cm

ball too
far away

Fig. 8. a) The option graph of a simple goalie behavior. Boxes denote options, ellipses
denote basic behaviors. The edges show which other option or basic behavior can be
activated from within an option. b) The internal state machine of the option “goalie-
playing”. Circles denote states, the circle with the two horizontal lines denotes the initial
state. An edge between two states indicates that there is at least one transition from
one state to the other. The dashed edges show which other option or basic behavior
becomes activated when the corresponding state is active. c) the decision tree of the
state “get-to-ball”. The leaves of the tree are transitions to other states. The dashed
circle denotes a transition to the own state.

The Extensible Agent Behavior Specification Language XABSL is an
XML based behavior description language. XABSL can be used to describe be-
haviors of autonomous agents. XABSL simplifies the process of specifying com-
plex behaviors and supports the design of both very reactive and long term
oriented behaviors. The runtime system XabslEngine executes the behaviors on
a target platform.

In XABSL, an agent consists of a number of behavior modules called options.
The options are ordered in a rooted directed acyclic graph, the option graph (cf.
8a). The terminal nodes of that graph are called basic behaviors. They generate
the actions of the agent and are associated with basic skills.

The task of the option graph is to activate and parameterize one of the basic
behaviors, which is then executed. Beginning from the root option, each active
option has to activate and parameterize another option on a lower level in the
graph or a basic behavior.

Within options, the activation of behaviors on lower levels is done by state
machines (cf. 8b). Each state has a subsequent option or a subsequent basic
behavior. Note that there can be several states that have the same subsequent
option or basic behavior.

Each state has a decision tree (cf. 8c) with transitions to other states at the
leaves. For the decisions the agent’s world state, other sensory information and
messages from other agents can be used. As timing is often important, the time
how long the state is already active and the time how long the option is already
active can be taken into account.



The execution of the option graph starts from the root option of the agent.
For each option the state machine is carried out one times, the decision tree of
the active state is executed to determine the next active state. This is continued
for the subsequent option of the active state and so on until a basic behavior is
reached and executed.

The Behavior of the GermanTeam is documented in an extensive
HTML documentation of the GermanTeam behaviors generated automatically
that can be found under http://www.ki.informatik.hu-berlin.de/XABSL/exam-
ples/gt2003/index.html. Here, only three aspects of the behavior are emphasized:

Negotiations and Dynamic Role Assignment. The three field players ne-
gotiate which of them is the striker, the offensive supporter, or the defensive
supporter. This is done depending on the estimated time that each robot needs
to approach the ball. This time is influenced by the distance to the ball, the
angle to the ball, the time since the ball was seen last, and the obstacle model.

Use of Obstacle Model. The GermanTeam uses the obstacle avoidance that
was shown in the obstacle avoidance challenge during the whole games. It is used
during positioning, ball searching and ball approaching. Only in the near of the
ball (less than 70 cm) it is switched off.

The kicks are also chosen dependent on the obstacle model. If there are many
other robots in the near of the robot, the striker does not try to grab the ball
and kick it exactly. If there are obstacles in line to the opponent goal, the robot
tries to kick the ball to a teammate.

Continuous Basic Behaviors. Besides simple basic behaviors that execute a
discrete action like performing a kick or walking in one direction, there are more
complex behaviors that allow pursuing multiple objectives simultaneously while
leading over from one action to another continuously. Such a basic behavior,
e. g., could move towards the ball, while at the same time it is avoiding to run
into obstacles by moving away from them.

These behaviors are called continuous basic behaviors and are implemented
following a potential field approach. The potential field defining one basic be-
havior is configured by putting together several so-called rules, i. e. components
representing single aspects of the desired behavior. Each rule is a simple poten-
tial field either attractive to a target position or repulsive from one or multiple
objects. These rules may be e. g. going to the ball or avoiding running into the
own penalty area.

The potential fields of all rules for one basic behavior are superposed resulting
in one field which is evaluated at the position of the robot to generate the current
walking direction and speed (cf. Fig. 9).



a) b) c)

Fig. 9. Continuous basic behaviors. a) Potential field for going to the ball while avoiding
running into the own penalty area. b) Resulting walking path demonstrating the go to
ball basic behavior. c) Walking path for a basic behavior going to the own goal without
running over the ball.

7 Conclusion and Future Work

In 2003, the main innovations by the GermanTeam were the introduction of using
edges for self-localization, detecting and modeling obstacles to improve game
play, using potential fields to implement basic behaviors, and using dynamic
role assignments. Additional innovations, not used during the games this year,
but that will hopefully be used next year, are the automatic color calibration,
and the detection of collisions.

The GermanTeam finished the round robin as winner of its group, even
against the later runner-up, the UPennalizers. In the quarter final, the Ger-
manTeam lost in a 29 minutes penalty shootout against CMPack’03. However,
the GermanTeam won the RoboCup Challenge with 70 out of 72 possible points,
i. e. it reached the first places in the “Black and White Ball” challenge and the
“Obstacle Avoidance” challenge and the third place in the “Localization without
Colored Beacons” challenge.

The robot vision and localization used deliver highly accurate results [5, 7];
they do, however, highly rely on the use of manually calibrated color tables.
Work on an auto-adjusting vision system has been started [4] and it is planned
to use it in next year’s competition.

We are currently working on the implementation of optimal gait trajecto-
ries, which are solutions of an optimal control problem involving a dynamical
model of the robot and several boundary and nonlinear implicit conditions [10,
11]. Efficient dynamics algorithms like Articulated Body Algorithm are used to
evaluate the dynamics of the full three dimensional dynamical model efficiently.
The problem formulation for generating stable gaits that minimize time or en-
ergy subject to the legged robot dynamics leads to an optimal control problem,
which is solved numerically by a parameterization, collocation and sparse non-
linear optimization approach. First experiments have started and lead to an



improvement of the model by avoiding slipping and taking into account more
detailed characteristics of the motors. These optimizations are computed offline.
The resulting optimized trajectories are then reproduced on the robot.

References

1. T. Röfer, “An architecture for a national robocup team,” in RoboCup 2002: Robot
Soccer World Cup VI (G. A. Kaminka, P. U. Lima, and R. Rojas, eds.), Lecture
Notes in Artificial Intelligence, (Fukuoka, Japan), pp. 417–425, Springer, 2003.

2. T. Röfer, H.-D. Burkhard, U. Düffert, J. Hoffmann, D. Göhring, M. Jüngel,
M. Lötzsch, O. v. Stryk, R. Brunn, M. Kallnik, M. Kunz, S. Petters, M. Risler,
M. Stelzer, I. Dahm, M. Wachter, K. Engel, A. Osterhues, C. Schumann, and
J. Ziegler, “GermanTeam RoboCup 2003,” tech. rep., 2003. Only available online:
http://www.robocup.de/germanteam/GT2003.pdf.

3. I. Dahm, S. Deutsch, M. Hebbel, and A. Osterhues, “Robust color classification for
robot soccer,” in 7th International Workshop on RoboCup 2003 (Robot World Cup
Soccer Games and Conferences), Lecture Notes in Artificial Intelligence, (Padova,
Italy), Springer, 2004. to appear.

4. M. Jüngel, J. Hoffmann, and M. Lötzsch, “A real-time auto-adjusting vision sys-
tem for robotic soccer,” in 7th International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelli-
gence, (Padova, Italy), Springer, 2004.

5. T. Röfer and M. Jüngel, “Vision-based fast and reactive Monte-Carlo localization,”
in Proc. of IEEE International Conference on Robotics and Automation, (Taipei,
Taiwan), pp. 856–861, IEEE, 2003.

6. D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localization: Efficient
position estimation for mobile robots,” in Proc. of the National Conference on
Artificial Intelligence, 1999.

7. T. Röfer and M. Jüngel, “Fast and robust edge-based localization in the Sony
four-legged robot league,” in 7th International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelli-
gence, (Padova, Italy), Springer, 2004. to appear.

8. M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel, “Designing agent behavior
with the extensible agent behavior specification language XABSL,” in 7th Inter-
national Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Con-
ferences), Lecture Notes in Artificial Intelligence, (Padova, Italy), Springer, 2004.
to appear.

9. M. Lötzsch, “The XABSL web site,” http://www.ki.informatik.hu-
berlin.de/XABSL.

10. M. Hardt and O. von Stryk, “The role of motion dynamics in the design, control
and stability of bipedal and quadrupedal robots,” in RoboCup 2002: Robot Soccer
World Cup VI (G. A. Kaminka, P. U. Lima, and R. Rojas, eds.), Lecture Notes in
Artificial Intelligence, (Fukuoka, Japan), pp. 206–223, Springer, 2003.

11. M. Hardt, M. Stelzer, and O. von Stryk, “Efficient dynamic modeling, numerical
optimal control and experimental results for various gaits of a quadruped robot,”
in CLAWAR 2003 - 6th International Conference on Climbing and Walking Robots,
(Catania), 2003.


