Humboldt-Universiat zu Berlin
Department of Computer Science

Research Group Atrtificial Intelligence

Martin Lotzsch
XABSL - A Behavior Engineering System for

Autonomous Agents

Diploma Thesis

Advisors: Prof. Hans-Dieter Burkhard

Dr. Thomas Rfer

October 2004

Erklarung

Hiermit erklare ich, die vorliegende Diplomarbeit selfastlig und nur unter Zuhilfenahme der angegebe-

nen Literatur verfasst zu haben.

Ich bin damit einverstanden, dass ein Exemplar dieser Arbeit in der Bibliothek des Institutfofmatik

der Humboldt-Universiit zu Berlin ausgestellt wird.

Berlin, Oktober 2004

Martin Lotzsch

Abstract. In the area of agent systems, as throughout in computer science, formal methods
are applied to specify complex systems, to ensure certain properties of a system, or to gener-
ally simplify the development of solutions. In traditional symbolic artificial intelligence, logic
and planning theories are usually used for modelling autonomous agents. But these approaches
turned out to be not applicable for agent systems in highly dynamic environments. Therefore,
mainly in intelligent robotics, theories or formalisms are often not used when programming
agents to perform certain tasks. In this thesis Bktensible Agent Behavior Specification Lan-
guage(XABSI) is introduced as a pragmatic approach to agent engineering. It does not follow
any agent theory but in return provides a powerful set of tools for the convenient and rapid pro-
gramming of agent behavior. The system was succesfully applied bgdhmanTeanin the
RoboCup Sony Four Legged League, resulting in the win of the RoboCup world championship

2004.

Contents

1 Introduction 1
1.1 GoalsofthisWork e 1
1.2 SCOPE . . . e 1
1.3 Outline e 3
1.4 OwnContributions e L 3
2 Architectures and Languages 5
2.1 Behavior Control Architectures 5
2.1.1 Behavior-Based Architectureso L 6
2.1.2 Hierarchical and Layered ArchitecturesLL 7
2.2 Behavior ControlLanguages e 8
2.2.1 The Behavior LanguagebyBrooks L 8
222 COLBERT e e 9
223 GOLOG. e 9
2.2.4 UML Statecharts for Multiagent Specification 9
2.2.5 The Configuration Description LanguageL 10
3 The Extensible Agent Behavior Specification Language (XABSL) 13
3.1 Hierarchies of Finite State MachinesLL 13
3.1.1 TheOptionGraph e 14
3.1.2 StateMachines L 17
3.1.3 Interaction with the Environment L. 19
3.1.4 The Execution of the Option HierarchyL] 19

3.2 Behavior Specificationin XML e 20
3.3 TheXABSLLanguage i i i ittt e e e e e e b 23
3.3.1 Symbols, Basic Behaviors and Option Definitions[.L 23
3.3.2 Optionsand States 25
3.3.3 Boolean and Decimal Expressions 27
334 AQeNnts e 29
3.4 Mechanismsand Tools 31
3.4.1 FileTypesandlInclusions. 32
3.4.2 DocumentProcessing. e 32
3.5 The XabslEngineClassLibrary L1 34
3.5.1 Running the Xabsl2Engine on a Specific Target Platform L.. 34
3.5.2 Registering Symbols and Basic Behaviors L.l 35
3.5.3 Creating the Option Graph and Executing the EngineL.. 36
3.5.4 DebugginglInterfaces oL 37
3.6 DISCUSSION 39
Applications 41
4.1 RoboCupandtheGermanTeaml 41
4.1.1 TheSonyFourlLeggedLeague 41
4.1.2 Characteristics of the Sony Four Legged LeagueL.. 43
4.1.3 The Software Architecture of the GermanTeamand XABSL 44
4.1.4 History of Developmentl 46
4.1.5 Developing Agent BehaviorsinaTeamLL 46
4.2 Playing Soccerwith XABSL e 47
421 BallHandling e e 47
4.2.1.1 Approaching e 47
42.1.2 Dribbling. e e 52
4.2.1.3 Grabbing and Pushing BackwardLL 54
42.1.4 Kicking e 56
4215 ZonesforBallHandling 59
4.2.1.6 Transitions Between Ball Handling Behaviors| 60

4.2.2 Navigation and Obstacle AvoidanceLL 61

4,221 WalkingtoaPosition 61

4.2.2.2 WalkingtoaFarAwayBallL. 62
4223 POSItioNINg 63
423 PlayerRoles e e 64
4.23.1 Striker 64
4.2.3.2 SUPPOIEIS 66
4233 Goalie e L 68
4.2.3.4 Dynamic Role Assignmentsl 72
424 GameControl. 73
425 Cheeringand Artistry 77
4.3 Head Control with XABSL e 77
4.4 XABSL inthe ASCII Soccer Simulator L 79
Conclusion and Future Work 3
5.1 Results at RoboCup Competitions L 83
52 FutureWork e L 85
5.2.1 Possible Extensionsto XABSL ool 86
5.2.2 The Double Pass Architecture 87
5.2.3 Learning Basic Capabilities00 L 89
5.2.4 Detecting Strategies and Adapting to OpponentTeamsL L. 90
5.3 Acknowledgements e L 91

1 Introduction

Multi-agent systems in complex and dynamic environments are a more and more important research subjec
both in intelligent robotics and artificial intelligence. In traditional robotics, impressing behaviors have been
realized with simple sensor-actuator loops. Although Brogks [13] showed how to combine these control
programs to achieve more complex behaviors, it is challenging to scale up such systems.

Many agent architectures from classical Al were developed for simplified and artificial environments.
Therefore problems arise when they are confronted with more natural environments. Noisy sensor readings

unpredictable dynamics, and the uncertainty of actions ask for new sophisticated approaches.

1.1 Goals of this Work

The major goals of this work are the design of a behavior control architecture for autonomous agents in
highly dynamic environments as well as the development of a high-level language for describing agent
behavior following such an architecture. The RoboCup domaih [36], a common problem for multi-agent
systems, provides a test bed for that work.

The architecture has to support complex long-term and deliberative decision processes as well as short
term reactive behaviors. Moreover, it is important that the architecture is able to deal with uncertain environ-
ments where actions can fail. It is necessary that the system is modular to ensure the reusability of behavior
in different contexts and the extensibility of implementations. The language has to simplify and speed up
the process of agent behavior specification. It should be scalable and easy to understand. Finally, it shoul

help behavior designers to keep an overview over large behavior implementations.

1.2 Scope

Many agent theories or agent architectures deal with the description of whole agent systems, including

their perception and action capabilities and possibilities to reason how to achieve goals. For example, in the

1 Introduction

BDI architecture[[50], 60] theeliefs desires andintentionsof an agent are modeled. Theliefsrepresent
information items of the environment’s state and are updated after each sensing actidesifésof an

agent represent the objectives (or goals) and what priorities or tradeoffs are associated with these objectives.
Reasoning about thaesires the selection functiordetermines the systemistentions The actionsof the

system are generated based onitiientions

Some Al researchers approach the problem of generatiegtionsby desireswith modal logic [18[70].
They try to formalize all interactions between theliefs desires andintentions all static and dynamical
constraints of the system, and the impact of the actions on the environment. If such a formalization exists,
intentions can be achieved by applying decision theory. Generating appropriate actions can be seen as a
kind of classical problem solving. However, for agents in complex, highly dynamic, and unpredictable
environments it is a difficult task to cope with the dynamics of the system by means of logic. Logic based
planning algorithms are therefore not in the scope of this work. [Gat [27] remarks: “Elevator doors and

oncoming trucks wait for no theorem prover.”

This work deals with the selection of actions from beliefs. Deliberative and reactive decision making
is based on hierarchical plan structures which are pre-defined by behavior designers. It focuses neither on
how thebeliefsof an agent are structured or how they are created nor on how the actions of the agent are

performedBeliefsand actuator control programs are assumed to exist already in the agent system.

Wooldridge [73[72] divides the field of intelligent agents into the areas of agent theories, agent architec-
tures, and agent languages. Agent theories are not in the scope of this work and as holistic agents are not
investigated but only the selection of actions, the teloeisavior control architectureandbehavior control

languagesare used instead of agent architectures and agent languages.

Although the work is related to multi agent systems, it does not deal explicitly with the modeling of agent
communication and negotiation issues (cf. €.gl [30, 69]). Messages that are exchanged between agents can
be seen as additional input and output of an action selection system. It will be shown how agent teams

modeled with the proposed architecture will perform cooperative tasks using communication.

Many approaches deal with either deliberative or reactive path planning. But behaviors which perform
obstacle avoidance or other navigation tasks using such algorithms can be seen as basic skills of an agent

system and will therefore not be dealt with in this work, too.

1.3 Outline

1.3 Outline

Chapter 2 gives an overview of state-of-the-art agent and behavior control architectures and languages
Chapter 3 is the central part of this work. It describes a behavior control architecture based on hierarchica
finite state machinédor action selection. ThExtensible Agent Behavior Specification Langugg&BSl)
is introduced as an XML based agent language formalizing that architecture. The language itself, the tools
that were developed in conjunction with the language, and the runtime systbstEngineare described.
Although theXABSLsystem is fully explained in this thesis, there is an even more detailed language refer-
ence and the API documentation of tabslEngineclass library on th&XABSLweb site [45].

Chapter 4 shows how th€ABSLsystem was applied in the RoboCup robot soccer domainGHEnman-
Team a national team consisting of researchers from four German universitiesXAB&i for its partici-
pation in the RoboCup Sony Four Legged Leadgué [BZJBSLhelped the team to win the 2004 RoboCup
world championships. In addition, 20ABSLexample implementation was done for th8ClII-Soccefl0]
soccer simulation to show that the whole system is independent from the platform@éthemnTeam

Finally, chapter b5 lists the results ¥ABSLbased teams at national and international RoboCup competi-

tions and suggests a few ideas for further improvements.

1.4 Own Contributions

The author developed théABSLIlanguage definition, the tools, and tKabslEngineclass library. Fur-
thermore, the author was the leader of the behavior control group @ehmanTeanand coordinated its
behavior control related attempts.

The behavior architecture was developed in collaboration with Hans-Dieter Burkhard, Matthge, J
Joscha Bach, Ralf Berger, and Michael Gollin. Matthiasgkl helped to implement some of the tools. Uwe
Duffert and Thomas &fer provided technical advice and bug fixes. Michael Spranger developed a profiling
tool on top of theXABSLsystem. Max Risler and Matthiagidgel made suggestions how to improve the
language.

Finally, XABSLcould not have been employed in the Sony Four Legged League had not humerous

members of th&sermanTeanmplemented and tuned many behaviors.

Ynstead offinite state machinethe termfinite state automatoFSA is sometimes used in the literature. Nevertheless, for
consistency with recent own publications and documentations, thefitgtenstate machineiill be consequently employed in

this thesis.

1 Introduction

Parts of this work (especially parts of chaptér 3 and 4) have already been published by the author in
[46,[45 15[20, 62].

2 Architectures and Languages

The field of behavior control architectures and behavior control languages is very wide. This chapter deals
with those who are in a closer relation to this work. It will be shown that the distinction between architectures
and languages is at times arbitrary as languages are always based on architectures and some architectu

contain precise formalization.

2.1 Behavior Control Architectures

“Agent architectures can be thought of as software engineering models of agents; researchers in this are
are primarily concerned with the problem of designing software or systems that will satisfy the properties
specified by agent theorists"[[72]

Nearly all behavior control architectures are labeled erdactiveor deliberativeor both. But there are as
many different usages of these terms as there are different architectures. The weakest deliberative
requires that the environment is represented in a persistent state, the world model. Accordingly, all behavior:
that react directly on the sensory inputs are labeled reactive.

Deliberative in a stronger sense means that persistent states of own intentions are used. Decisions al
made not only dependent on a world model but also based on past decisions, which allows to continue
started plans.

The strongest notion of deliberative means that an agent is able to develop abstract plans by reasonin
about the state of the environment, own desires, own action capabilities and their impact on the environment
This notion is usually related to the teptanning

Hybrid architecturesare employed when both fast adaptions to changes in the environment as well as
deliberative behaviors are needed. In these architectures, a strict separation into a deliberative and a reacti
component is done. However, it is problematic that there is no general rule that assigns a behavior to one
of these components. Usually, this separation is done dependent on the time consumption of the decisio

making methods. All decisions that are more time consuming than allowed in the reactive component are

2 Architectures and Languages

made by the deliberative component. Architectures in which such a separation is not done but which are
nevertheless able to model both very long-term and short-term behaviors, are hard to classify but are often
labeled reactive.

Besides the distinction in reactive and deliberative, Russel and Nanig [66] propose a different catego-
rization of agent architectureSimple reflex agent@spond immediately to perceptmal based agentsct

so that they will achieve their goals, andlity based agentsy to maximize their own “happiness”.

2.1.1 Behavior-Based Architectures

In reactivebehavior-basedarchitectured]7], behavior control programs are decomposed into a set of distinct
low-level basic skills (basic behaviors) and selection mechanisms that combine these abilities into complex
behaviors.

Each basic behavior is designated for performing a certain specific task. Mostly they are reactive, which
means they do not have any persistent states but react directly to changes in the environment in close sensor-

actuator loops. There are at least three different methods for combining or composing these behaviors.

Continuous Combination of Behaviors. Primitive behaviors can be combined continuously. When
following this approach, all behaviors contribute to the entire agent behavior. For each of them an utility
weight is estimated and then the output values of all behaviors are scaled by their corresponding weights

and simply summed up. For instance, in a mobile robot several navigation behaviors (e.g. “move-to”, “avoid-

obstacles”, “avoid-wall”, etc.) could all provide their desired movement vectors. By scaling them with their
utility weights and summing them up, an overall behavior that reaches a goal, avoids obstacles on the way
there, and keeps distance from walls could emerge.

The AuRAarchitecture[[B] gives an example how to to apply this method. However, complex systems

with unsuperimposable actions can not be modeled with this.

Competitive Approaches. Furthermore, the basic behaviors can compete for the control of the agent.
Maes [49] developed an architecture where the primitive behaviors are caltepetence moduleEach

of these modules has a set of pre- and post-conditions and has to provédgivation level an utility

measure for the module in a particular situation. The higher the activation level of a module, the more likely
this module will influence the behavior of the agent. The modules are connected by successor, predecessor,
and conflicter links in aspreading activation networkActive modules inhibit other modules connected

by conflicter links and activate neighbored predecessor and successor modules. The major difficulty for

2.1 Behavior Control Architectures

applying this architecture is to find appropriate activation functions for each module. It is very hard to tune
these functions so that in all situations the most applicable module is activated most.

A similar and even simpler architecture is thgésumption architectudey Brooks [13]. In this architec-
ture, thebehaviorsare layered in a hierarchy. Primitive behaviors (such as collision avoidance) reside on
lower layers whereas more high-level behaviors are placed on top of them. Lower layers can inhibit higher

layers to gain control over the behavior of the system.

Finite State Machines. Finally, basic behaviors can be composed vethte basedechniques[[39].
In these architectures, only one of the basic behaviors is active and executed at a time. Behavior selectio
is done by usindinite state machinesrhe behaviors correspond to states and are selected by transitions
between the states. The transition functions are dependent on the active state, events, changes in time, a
changes in the environment. Arkinl [5] uses the téemporal sequencinfpr the method as the behaviors
are performed in sequential order.

Finite state machines exhibit two important advantages: First, it is possible to define a hysteresis betweel
two states. For example, if there is a transition from statéo states, when a certain variable exceeds
a threshold;, there could be a transition froms to s; when the variable falls below— e. This helps to
stabilize decisions based on noisy sensor readings. Second, as decisions are made different for each sta

only useful successor behaviors are selected.

2.1.2 Hierarchical and Layered Architectures

Many architectures are calldderarchical or layered Usually this means that there are different levels of
abstraction. Lower layers react directly on changes in the sensor readings. The higher the layer, the mor:
long-term decisions are made and more abstract representations of the environment are used. Often, a sey
ration into a deliberative and a reactive layer is done. Sometimes, these layers do not work synchronously
which means that high-level components are not executed as frequent as low-level ones.

Hierarchical can also mean, that many behaviors are ordered in a hierarchy. This can be seen from twc
perspectives: Either, top-level goals or plans can be recursively decomposed into sub goals or sub plans o
more high-level and complex behaviors can be composed from more low-level and simpler ones (modular-
ity principle). This allows to reuse behaviors in different more high-level contexts. Systems can be easier
developed as behaviors can be tested separately before they are composed to more complex ones. In ad

tion, such modularity reduces the complexity of planning. It would be difficult to cope with if all decisions

2 Architectures and Languages

would be made by a holistic system. Behavior hierarchies allow to distribute different decisions into different
modules.

When using finite state machines for decision making, the number of transitions usually exponentially
increases with the number of states. Ordering finite state machines in a hierarchy can reduce the number of

necessary transitions.

2.2 Behavior Control Languages

Specific behavior description languages prove to be suitable replacements to native programming languages
such as C++ when the number and complexity of behavior patterns of an agent increases. They allow for
convenient and fast behavior design and implementations are often easier to scale-up. Visualizations and
other helper tools support the development process. Additionally, some languages provide mechanisms to
prove or guarantee certain agent properties. “Without adequate techniques to support the design process,
such systems will not be sufficiently reliable, maintainable or extensible, will be difficult to comprehend,
and their elements will not be re-usablé.”[35]

There are innumerable languages that were developed for certain architectures and platforms. This section

only lists a few noted languages. For an overview and introductions, referlto [47.153] 31, 42].

2.2.1 The Behavior Language by Brooks

One of the oldest behavior specification languagesB#tavior Languagfl4], was developed by Brooks to
specify agents following an improved version of the subsumption architeCtdre [13]. It is a subset of Lisp and
has a comparatively large expressivity. The behaviors are implemented in asynchronous processes which
communicate via message passing. Each process contains a set of “real-time rules” that modify certain
variables, send messages, or influence other behaviors. Initially, a process is in a wait state. As soon as the
condition of a rule becomes true, the statements inside a rule are evaluated sequentially and the process
returns into the wait state. If the rule recursively contains other rules, the control remains inside this rule. All
rules are assumed to run in parallel and asynchronously. But there is also a possibility to declare exclusive
rules. When the condition of such a rule becomes true, no other rules are evaluated.

Such a rule set can be compiled into a finite state machine, which is then either compiled into the assem-
bler code of an embedded system or into Common Lisp code for simulation purposes. The compiler also

organizes the serialization of the concurrent processes as real concurrency is often not possible on embedded

2.2 Behavior Control Languages

systems.
The language convinces by its complexity and well-chosen design. The rich set of usable mechanisms

makes it a good choice for developing systems following the subsumption architectures.

2.2.2 COLBERT

Much simpler is theCOLBERTIlanguage([3[7] which was developed by Konolige for reactive control in
the Saphira[38] framework.COLBERTis a subset of ANSI C with a few extensions for robot control. An
interpreter executes the language directly, so that programs can be modified during execution. A debuggin
tool allows for monitoring the current state activations. Source code in this language looks similar to usual
C programs, for instance there ardile andif statements. Function calls in control blocks, that perform
actions, correspond to states of a finite state machine. The control remains in the state until the behavior i
finished. In addition, external conditions such as timeouts or other events can be specified to influence the
control.
The language follows a simple and straightforward approach. However, because of its simplicity it could

be difficult to apply it in more complex systems.

2.2.3 GOLOG

GOLOGby Lakemeyer and Levesqgue [43] is the most widely known logic based behavior control language.

It is based on the situation calculus and has a syntax similar to Prolog, with extensions for procedural
constructs. The actions of the system are generated by theorem proving as in a Prolog interpreter. Althoug
Dylla et al. [22] showed how to use GOLOG on real robots, it is very hard to apply this language to systems
in dynamic environments. The first problem is that the real world has to be translated into accurate symbolic
descriptions based on logical terms, which can be difficult for uncertain environments. Second, the impact
of actions on the environment and thereby on the world state of an agent has to be also represented wit
logic, which is even more difficult. Finally, speed is a problem when using Prolog interpreters in real-time

systems.

2.2.4 UML Statecharts for Multiagent Specification

Obst and Stolzenburg et al. employ UML statecharts for multi-agent specificationl [58, 4, 54]. Hierarchies
of state machines are used for action selection. Transition between states are equipped with simple vari

ables and predicates connected by simple Boolean expressions. Although the authors claim that the UM

2 Architectures and Languages

| double passing |

L]

w0 have_ball »
w1 teammate-in-passing.distance /
pass_ball
wp — opponent_has_ball *
w3~ teammate-in_passing-distan s
run 1
wy ball_approaching /

get_ball

W)
51 0 dribble

ws have_ball »
wg teammate_in_passing-distance /

-

teammate_in_passing_distance "
teammate-has.ball /
go-to_pass-position

w) ball_approaching /
get_ball

have_ball »
— teammate-in-passing.distance /

pass-ball

J

Figure 2.1:.UML statechart for two agents involved in a double pass (from [58]). Two concurrent sets of

states are shown together with conditions for transitions and actions that are carried out during

transitions.

specifications are translated “almost automatically” into a running implementation (into Prolog), the main

purposes of the modeling are the verification and formal analysis of the high level behaviors of an agent

system.

The interesting notion of concurrent states (cf. [fig! 2.1) allows for modeling and analyzing cooperative

behaviors performed by pairs of agents. In addition, applying UML statecharts allows them to use existing

graphical UML editing tools.

2.2.5 The Configuration Description Language

From the author’s point of view, the best and most advanced language for behavior specification in the related

work is theConfiguration Description Languag€DL) as a part of thlissionLabsystem[[48[_40]. In this

language, reactive stimulus-response behaviors perform the actions of a system and are implemented in a
native programming language (C++). Since these primitive behaviors all fulfill a specific task autonomously

and in interaction with the environment, the authors associate them with auton@tomie agentsas

introduced in Minsky's theory of agent societiés|[51].

Assemblage agentsr more complex tasks are constructed by combining and coordinating subordinated

agents (basic behaviors). Inside the assemblage agents, state machines are responsible for selecting one of

10

2.2 Behavior Control Languages

File Edit Advanced Configure

éFiIe: janiter.odi § Architecture: MAuRA | Current Page: $AN_367T

{ Hovement

Wander
0.8 curious
. 0.5 cautious

___________ ::;::... ...::..::::.. . :::::::::1_:::]'_:_.:-_?'

il st S RAR T Ee

L TinBas g [Hear O ALY = Hanﬂér —
E PutInBasket Baskets ... Hovelo .- [petect - 0.8 curious
,,,,,,,, - _ . 0.1 Distance Baskets . 0.5 cautious

Figure 2.2.The graphicalConfiguration Editor(CfgEdif) as a part of théMissionLabtoolset (from [48]). A

state machine describing the task of a trash collecting robot is shown.

the subordinated behaviors. Each state in the state machine of the agent denotes a member agent whi
has the control over the actions of the systems while the state is active. The transitions between states al
triggered by perceptual signals. Such assemblage agents can be treated as primitive behaviors to constrt
more complex assemblages. The possibility for constructing assemblages recursively from others allows tc
reuse well-designed behaviors in different contexts.

CDL is not only a language for behavior specification but also for the design of complete agent systems.
Different levels of abstraction allow to bind developed solutions to different robotic platforms. However,
a minor disadvantage of applying CDL could be that the agent architecture of the own system has to be
largely adapted to the MissionLab system, which is often only possible when developing a new system from
scratch.

The graphicalConfiguration Editor(CfgEdit, cf. fig.|2.2) is the most interesting feature of the system.
It allows to create recursive assemblies graphically. In addition, debug tools and a robot simulator are inte-

grated.

11

2 Architectures and Languages

12

3 The Extensible Agent Behavior Specification

Language (XABSL)

The Extensible Agent Behavior Specification Language (XAB&])is an XML based language for be-
havior engineering. It simplifies the process of specifying complex behaviors and supports the design of
both very reactive and long term oriented agent behaviors. It is not only a behavior modeling or description
language — instead, behaviors writteriiABSLcan be transformed automatically into an intermediate code
which is executed directly on a target platform usingXadslEngineclass library. Together with the inter-
preter and a variety of tools for visualization and debugging, behavior developers get a complete system fol
behavior specification, documentation, testing, execution, and debugging. TheX@ift system can be

downloaded for free from thEABSLweb site [45].

Section 3.1 describes hierarchical finite state machines for action selection as the behavior control ar
chitecture behincKABSL Section 3.2 gives an overview of tbBSLlanguage and section 3.3 provides
a brief introduction to the language elements and the syntax. Séction 3.4 deals with some technical issue
related to the use of XML techniques and the tools that were developed in conjunctioRABBL Section
3.5 describes the runtime systéfabslEngineFinally, section 3.6 relates the architecture and the language

to other approaches.

3.1 Hierarchies of Finite State Machines

In XABSL, behavior modulesoftiong that contain state machines for decision making are ordered in a

hierarchy, theoption graph with atomicbasic behaviorst the leaves.

13

3 The Extensible Agent Behavior Specification Language (XABSL)

3.1.1 The Option Graph

An XABSLbehavior specification consists of a set of behavior modules cafitdnsand a set of distinct
simple actions (skills) calletasic behaviorsBoth options and basic behaviors can have parameters. The
options are ordered in a hierarchy — complex behaviors are composed from simpler ones. Each option uses

a set of other subordinated options and/or basic behaviors to realize a certain behavior.

For example in figuré 3.1, the optidgrab-ball-with-head” (a behavior for grabbing and holding the
ball between the front legs and the head of an Aibo robot) is composed of the tgpiproach-ball” (a
behavior for walking to the ball) and the basic behavigalk” (a behavior for blind walk).

Each basic behavior and option can be used from more than one other option. This allows to reuse the
same behaviors in different contexts. E.g. in figure 3.1 a few other optionsdhaimball-with-head” use
the option“approach-ball”. This helps behavior developers to modularize their behaviors. In the example,
only one behavior for ball approaching was developed and fine-tuned and then used by very different other

options.

The option hierarchy can be seen as a rooted directed acyclic graph, callgatitregraph The basic
behaviors are the leaves (terminal nodes) of this graph. The “topmost” option (at the root of the graph) is
called theroot option Note that inXABSLIt is possible to specify option graphs that contain loops (and are
for this reason not acyclic). But the runtime system is able to detect such loops at startup and denies work if

the graph is not acyclic.

In the architecture, action selection means to activate, parameterize, and execute one of the basic
behaviors. Therefore, the root option (which is always active) activates and parameterizes one of its
subsequent options, this subsequent option again activates and parameterizes one of its subsequent options
or basic behaviors and so on until a basic behavior is activated, parameterized, and executed. As the option

graph is directed and acyclic, always exactly one of the basic behaviors is reached and executed.

In XABSL, a subset (sub-graph) of the options and basic behaviors which is spanned by a specially marked
option, theroot option is called amagent (As the option graph does not need to be connected completely,
it is not possible to determine a single root option of the graplgentsmark the root options of different

trees.)

14

3.1 Hierarchies of Finite State Machines

handle
ball
handle handle
ball ball
in
near
center own
of
field goal
VI handle \
turn ball handle handle
and at ball ball
release left at at
and and opponent opponent
kick right border goal
border
iy G
approach turn
turn and around
and turn ball
release and and
kick kick
L}
: approach
= and approach
. kick PP
and
- and turn
[] go
[] on
approach execute
ball kick
approach \
ball turn
set for
walk ball
speed
walk ?g special do
ball without action nothing

turning

Figure 3.1:An example for an option graph from the robot soccer domain (the ball handling part of the
GermanTears soccer behaviors for the world championships 2004 in Lisbon). Boxes denote
options, ellipses denote basic behaviors. The edges show which other option or basic behavior
can be activated from within an option. The thick edges mark one of the many possible option

activation paths. The internal state machine of optignab-ball-with-head” (marked with the

dashed rectangle) is shown in figure|3.2.

15

3 The Extensible Agent Behavior Specification Language (XABSL)

option grab-ball-with-head

approach
ball

|/
ll/l [|
u/
[]
1
- continue
1
/. grabbed
i grab
I'm <
L}
-
/
1
1

approach
ball \

approach
ball
set
walk
speed

go
ball

Figure 3.2:An example for an option’s internal state machine (the optgmb-ball-with-head” from the
example in figure 3/1). Circles denote states, the circle with the two horizontal lines denotes the
initial state, the double circle denotes a target state. An edge between two states indicates that

there is at least one transition from one state to the other. The dashed edges show which other

option or basic behavior becomes activated when the corresponding state is active. The decision

tree of statégrab” (marked with the dashed rectangle) is shown in figure 3.3.

16

3.1 Hierarchies of Finite State Machines

option grab-ball-with-head

state grab

| greater | ;

! than200 | [else
! I

1

B /
Lo__mm_ i
\
\

\
grab in \
progress

-
-

approach continue

grab

~— 7

Figure 3.3:An example for a decision tree of a state (stgi@b” of option“grab-ball-with-head” in figure
3.2). The leaves of the tree are transitions to other states. The dashed circle denotes a transition t

the same state. The pseudo code of that decision tree is shown in figure 3.4.
3.1.2 State Machines

Within options, the activation of subordinated behaviors is done by finite state machines| Figure 3.2 shows ar
example of such a state machine. In each option, exactly one state is markeuhaistiséate This state gets
activated when the option becomes newly activated. An arbitrary number of states can be dedtaged as
states This allows to indicate that a behavior is finished as higher options can query whether a subsequen
option reached a target state. Each state is connected to exactly one subsequent option or subsequent be
behavior. Note that more than one state can be connected to the same subsequent option or basic behavi
Always exactly one state of an option is active. This state determines, which of the subordinated behaviors
is activated and how its parameters are set.

Each state hasdecision treewhich selects a transition to either another or the same state. Figure 3.3 gives
an example for such a decision tree. For the decisions, the following information can be used: Parameter
passed by higher options, the world state, other sensory information, and messages from other agents. A

timing is often important, it can also be taken into account how long the state and the option are already

17

3 The Extensible Agent Behavior Specification Language (XABSL)

if ((hall.time-since-last-seen-consecutively < Z200) A ball distance greater than 200 mm
£& (bhall.consecutively-seen-time > 100)
£& (bhall.seen.distance > 200)
£& (hall.seen.distance < 500)

i

transition-to-state [approach-ball) ;

H

else

{

if (time-of-state-execution < 1000 £ grab in progress
{
transition-to-state (grah) ;
H
el=se
{
transgition-to-state ([continue-grahb) ;
H

Figure 3.4:The pseudo code of the decision tree of stgtab” (cf. fig. 3.3).

active. In addition, the success of a subsequent option can be tested by querying whether the subsequent

option reached one of its target states.

As each state has its own decision tree, the decisions are made not only dependent on the representation
of environment’s state but also on the decisions that were done in the past. When the active state is taken
into account, hysteresis functions between states are possible. That means if there is a transition from state
A to stateB for a certain condition, this condition can be different than for the transition fsaamA. Thus,

behaviors can be preferred once they were selected to avoid oscillations.

In the robot soccer example from figure 3.2, the optigrab-ball-with-head” is initially in the state
“approach-ball’. As long as the state is active, the subsequent optpproach-ball”’ is activated with
certain parameters, making the robot move towards the ball. As soon as the ball gets closer than a threshold,
the decision tree of statapproach-ball” selects a transition to statgrab” . State“grab” becomes the
active state and the subsequent basic behawialk” is executed with parameters such that the robot walks
onto the ball. If it somehow happens that during that the ball gets farer away than another, the decision tree
of state‘grab” selects a transition back to stdégproach-ball”. Otherwise, after a certain time a transition

to state‘continue-grab” is selected (cf. fig. 3/4).

18

3.1 Hierarchies of Finite State Machines

3.1.3 Interaction with the Environment

To access the information about the world that is needed for decision making, symbolic representations are
used. The world model of the agent system is divided into simple and non-structured information items,
called theinput symbolsin the ball grabbing example, amongst others the syrttiall.seen.distance’is

used to reference the distance to the seen ball in the world model.

The main actions of the agent system are controlled by the basic behaviors. It does not matter if these
actions are generated completely reactively using closed sensor-actuator loops or if intermediate represelt
tations such as a world model are used in addition. In embodied agents, the basic behaviors usually contrc
the agent’s locomotion system. E.qg. in the soccer behaviors ds#nmanTeamthe basic behaviors were
used to control all leg movements of the robots (walking and kicking).

Besides the execution of basic behaviors, the environment can be influenced by setting special request:
the output symbolsEach state within an option can set such output symbols to certain values to control
perception processes or additional actuators. For instance, for the robotSG#rianTeaman important
actuator independent from the leg movements is the head. The output syraadicontrol-mode”is used
to set a general mode how to move the head independent from the selected basic behavior. This mode
then used by other parts of the software to control the head movements. But also LED and sound output an

messages to team mates are triggered with output symbols.

3.1.4 The Execution of the Option Hierarchy

An XABSLbehavior implementation is always a part of a wider agent program. The surrounding software
has to process the sensor readings, build up (if necessary) a world model, manage the communication t
other agents, control the actuators and so on. At some point iaghige-think-act cycléhe program passes
the control to theXABSLsystem to execute the option graph. Before, all data needed for decision making
have to be up to date. Afterwards, the actions generated by the basic behaviors and the additional reques
set by the output symbols have to be (processed and) sent to the actuators of the agent system.

Each time the option graph is executed, a basic behavior becomes selected and execuX&BSlhe
system has to be executed as frequent as required for the reactivity of the action system. Usually, it is
called as often as new data can be obtained from the agent’s main sensor. For instance on the Aibo robo

of theGermanTeantheXABSLbehaviors are always executed after a newly perceived image was processed.

The execution of the option graph starts from the root option (cf. lsect/ 3.1.1) of the agent. The decision

19

3 The Extensible Agent Behavior Specification Language (XABSL)

tree of the active state of the root option is executed to determine the next active state, which can of course
be the same as before. For the subsequent option of the active state, again the decision tree of the active state
is executed and so on until the subsequent behavior of a state is a basic behavior.

Each time a decision tree activates another or the same state, the newly activated state sets the parameters
of the subsequent option or basic behavior and the state’s output symbols. Note that output symbols that
were set during this process can be overwritten by options lower in the option graph. If an option was not

active during the last execution of the option graph, the state machine is reset (the initial state is activated).

The option activation path(cf. fig.|3.1) follows the path from the root option to the currently activated
basic behavior through all active options. As each option activates only one subsequent behavior at a time
and as the graph is rooted, directed, and acyclic, such a path exists and contains no brancties The
of option activationis the time, how long an option was consecutively activated. This time is set to zero
when an activated option was not active during the last execution of the option graph. Accordingistehe
execution timés the time how long the active state was consecutively activated.

The option activation path including the option activation time, active state, and state activation time for
all of its options constitute the global state of 38ABSLagent. The generated actions of the system depend
on this state, the perceptions and the world model (and, if the basic behaviors have persistent states, on these

states).

3.2 Behavior Specification in XML

Implementing such an architecture totally in C++ proved to be error prone and not very comfartable [15].
The source code became very large and it was quite hard to extend the behaviors. Therefouentie

ble Agent Behavior Specification Langua@g@BSL) was developed to simplify the behavior engineering
process.

The XABSLlanguage and supporting tools are completely based on XML techniques. Figure 3.5 shows
an example of alKABSLXML notation. The reasons to use XML instead of defining a new grammar from
scratch were the big variety and quality of existing editing, validation, and processing tools, the possibility
of easy transformation from and to other languages as well as the general flexibility of data represented in
XML languages. The syntax and even all constraining relations between the language elements are specified

in XML schema, so no other compile or validation tools than standard XSLT / XML processors are heeded

The only exception is the check for loops in the option graph. This can not be done by validating documents against XML

20

3.2 Behavior Specification in XML

<?xml version="1.0" encoding="IS0-8859-1"?>
<IDOCTYPE symbol-and-basic-behavior-files SYSTEM "../symbol-and-basic-behavior-files.dtd">
<option xmins="http:/Mmww ki.informatik.hu-berlin.de/XABSL2.2" xmins:xsi="http:/Mww.w3.0rg/2001/XMLSchema-
instance" xsi:schemal ocation="http:/Mww ki.informatik.hu-berlin.de/XABSL2.2
.A.1.1.[Tools/Xabs|2/xabsl-2.2/xabsl-2.2.option.xsd" name="grab-ball-with-head" initial-state="approach-ball">
&ball-symbols;
&head-and-tail-symbols;
&motion-request-symbols;
&special-action-symbols;
&strategy-symbols;
&robot-state-symbols;
&common-basic-behaviors;
&simple-basic-behaviors;
&options;
<common-decision-tree>
<if>
<condition description="ball distance greater than 200 mm">
<and>
<less-than>
<decimal-input-symbol-ref ref="ball time-since-last-seen-consecutively"/>
<decimal-value value="200"/>
</less-than>
<greater-than>
<decimal-input-symbol-ref ref="ball.consecutively-seen-time"/>
<decimal-value value="100"/>
</greater-than>
<greater-than>
<decimal-input-symbol-ref ref="ball.seen.distance"/>
<decimal-value value="200"/>
</greater-than>
<less-than>
<decimal-input-symbol-ref ref="ball.seen.distance"/>
<decimal-value value="800"/>
</less-than>
</and>
</condition>
<transition-to-state ref="approach-ball"/>
<fif>
</common-decision-tree>

<state name="grab">
<subsequent-basic-behavior ref="walk">
<set-parameter ref="walk.type">
<constant-ref ref="walk-type.normal"/>
</set-parameter>
<set-parameter ref="walk.speed-x">
<decimal-value value="200"/>
</set-parameter>
<set-parameter ref="walk.speed-y">
<decimal-value value="0"/>
</set-parameter>
<set-parameter ref="walk.rotation-speed">
<multiply>
<decimal-input-symbol-ref ref="ball.seen.angle"/>
<decimal-value value="2"/>
</multiply>
</set-parameter>
</subsequent-basic-behavior>
<set-output-symbol ref="head-control-mode" value="head-control-mode.catch-ball"/>
<set-output-symbol ref="ball.handling" value="handling-the-ball"/>
<decision-tree>

<if>
<condition description="grab in progress">
<less-than>
<time-of-state-execution/>
<cdecimal-value value="1000"/>
</Nless-than>
</condition>
<transition-to-state ref="grab"/>
<fif>
<else>
<transition-to-state ref="continue-grab"/>
</else>
</decision-tree>
</state>
</option>

Figure 3.5:An example for alkABSLXML notation: a source code fragment for the stagab” (cf. fig. 3?5?)
of option“grab-ball-with-head” (cf. fig.|3.2).

3 The Extensible Agent Behavior Specification Language (XABSL)

Many XML Editors are able to check whether XABSLdocument is valid at runtime. A high validation
and compile speed results in short change-compile-test cycles.

Standard XSLT transformations are used to comgheBSLdocuments to an intermediate code for the
runtime system and to generate extensive documentations. Note that the/figures 8.1, 3.2, 3.3, and 3.4 were
generated automatically from the XML source in figure 3.5.

An aftereffect of this restriction to standard XML technologies and tools is that the language had to be
adapted to existing tools to some extend. For example, some constructs had to be introduced only for the
compatibility with the used XML editor. And, which is also not typical for a programming language, there
is a relatively strict distribution of language elements onto different file types, which is required for efficient
processing of the data (in previous versionXéBSL, the complete specification of the behaviors was in

only one file, which made editing very slow).

Agent behavior specifications based on the architecture introduced in the previous section can be com-
pletely described itrKABSL There are language elements for options, their states, and their decision trees.
Boolean logic (|, &&, !, ==, ! =, <, <=, >, and>=), simple arithmetic operators —, *, /, and%),
and conditional decimal expressions (comparable to the ANSI C question mark operator,c) can be
used for the specification of decision trees and parameters of subsequent behaviors. Custom arithmetic func-
tions (e.g.“distance-to(x,y)"” that are not part of the language can be easily defined and used in instance
documents.

Symbolsare defined ilKABSLinstance documents to formalize the interaction with the software environ-
ment. Interaction means access to input functions and variables (e.g. from the world model) and to output
functions (e.g. to set requests for other parts of the information processing). For each variable or function that
one wants to use in conditions, a symbol has to be defined. This mak¥aBf&lframework independent

from specific software environments and platforms. An example:

<decimal-input-symbol name="ball.x" measure="mm"
description="The absolute x position on the field"/>

<decimal-input-symbol name="utility-for-dribbling"
measure="0..1" description="Utility for dribbling"/>

<boolean-input-symbol name="goalie-should-jump-right"

description="A ball rolls along to the right"/>

Schema and is therefore checked by the runtime system at startup.

22

3.3 The XABSL Language

The first symborball.x” simply refers to a variable in the world state of the agent systaetitity-for-
dribbling” stands for a member function of an utility analyzer dgoalie-should-jump-right’represents a
complex predicate function that determines whether a fast moving ball is headed to the right portion of the
own goal. In options, these symbols then can be referenced.

The developer may decide whether to express complex conditiofsBisLby combining different input
symbols with boolean and decimal operators or by implementing the condition as an analyzer function in
C++ and referencing the function via a single input symbol.

As thebasic behaviorare written in C++, prototypes and parameter definitions have to be specified in

anXABSLdocument so that states can reference them.

3.3 The XABSL Language

This section gives a brief introduction to the syntax and the semantics ¥&BSLlanguage. Thereby, the
formal structure of the grammar is, as usual in the XML world, displayed with syntax diagrams (e.g. fig.
3.6) instead of textual representations such as EBNF or others. A complete language reference can be four

at theXABSLweb site [45].

3.3.1 Symbols, Basic Behaviors and Option Definitions

Symbols, basic behaviors, and option definitions are referenced from inside options. In order that it can
be checked whether a referenced symbol (or option parameter etc.) exists, they all have to be declared i
definition files (comparable to header files in C++).

First, there are definition files for symbols. There can be many of them for grouping symbols thematically.
The element'symbols” is the root element of such a symbol file (cf. fig. 3.BABSLhas six different
symbol types that can be declared in arbitrary order inside a symbols elem&udokan-input-symbol”
represents a symbol for a Boolean, anddacimal-input-symbol”a symbol for a decimal variable or
function (theXabslEngineuses the data type double for decimal values). Besides the attfifarnee”,
which is the id of the symbol and which is referenced from inside options, it has additional attributes that
are needed for the generation of the HTML documentatiorfdécimal-input-function” is a prototype
for a parameterized decimal function. Each parameter of a function is defined in a séparataeter”
child element. The elemefienumerated-input-symboltepresents a symbol for an enumerated variable

or function. Each enumerated item is defined in a sifiglmum-element”child element. Output symbols

23

3 The Extensible Agent Behavior Specification Language (XABSL)

—{ boolean-input-symbol |

A symbol for a boolean input
variable or function in the
software environment.

—{ decimal-input-symbol |

A symbol for a floating point
or double input variable or
function in the software
environment.

—{ decimal-input-function = =

A symbol for a parameterized 1.0 A parameter of the function.
floating point or double input

function in the software

environment.

[y

A collection of symbols. [T T T T T T 1
Symbols are identifiers for ‘ xabsl:enumerated-symbol

\

entities in the software |
. enum-element |

—< \

1.2 |

\

environment. —{ enumerated-input-symbol
A symbol for an input variable or One value of an enumerated

function with an enumerated value | symbol.
space in the software environment. |

A symbol for an output variable or
function with an enumerated value
space in the software environment. |

constant

A decimal constant.

1..m, One value of an enumerated
symbol.

| .
|
\
enumerated-output-symbol [
— put-sy
|
|

N ——

Figure 3.6:The syntax of the elemefgymbols”.

are declared withenumerated-output-symbol'like the“enumerated-input-symbolélement with‘enum-

element’child elements. The elemefdonstant” defines a decimal constant.

Basic behaviors are written in C++. Nevertheless, in basic behavior files, a prototype has to be declared
for each of them. The elemeftasic-behaviors” (cf. fig.|3.7) is the root element of such a file and has
to have at least one child element of the typasic-behavior”, which defines a prototype for a basic
behavior. Optionally it ha¥parameter” child elements which declare a parameter that can be passed to the

corresponding basic behavior written in C++.

Every option is encapsulated in an own file. To be able to validate a single option (e. g. the existence of
a referenced subsequent option), there must be prototypes for all other options. Therefore XARSth
agent behavior specification a file named “options.xml” has to exist. It h&spion-definitions” (cf. fig.

3.7) root element. Inside'pption-definition” elements define a prototype for an option. As thasic-

24

3.3 The XABSL Language

xabsl:symbols
0..c

A collection of symbols.
Symbols are identifiers for
entities in the software
environment.

i_xabsl:basic-behaviors basic-behavior [
0..n 1,_, A simple parameterized (),, A parameter of the basic
A collection of basic behaviors. reactive behavior or action. behavior.

Basic behaviors are simple
parametrized behaviors written

in C++.
(option 5 —=

A behavior module. Contains PR .

a state machine that selects —{ xabsl:option-definitions [= option-definition [—----- —ena—]
between suboptions (other 2 — SNl
options) and basic behaviors. Declares all available options of a 1.0 Prototype, definition of an 0.0 A parameter of the basic
agent-collection. They are used Option. behavior.
in options for references to other
options.

- common-decision-tree

A common decision tree that is
carried out before the decision
tree of each state.

———=
~7

1.0
A single state in the state
machine of the option.

Figure 3.7.The syntax of the elemefwption” .

behavior” element, it can havgarameter” child elements that specify parameters of an option.

3.3.2 Options and States

The root element of an option file is theption” element (cf. fig. 3.[7). Inside that, the files for all referenced
symbol definitions and basic behavior and option prototypes are included using a DTD include mechanism
(cf. sect| 3.4).

After the included'symbols”, “basic-behaviors’, and“option-definitions” child elements, &common-
decision-tree”child element can follow. This is a decision tree which is carried out before the decision tree
of the active state. If no condition of the common decision tree proves to be true, the decision tree of the
active state is carried out. This can be used to reduce the complexity of implementation when the conditions
for a transition are same in each state. If the common decision tree uses expressions that are specific for
state (time-of-state-activation”or “subsequent-option-reached-target-statethese expressions refer to
the state that is currently active. The child elements tdammon-decision-tree’are the same as in the

normal decision tree of a state, which is explained later in this section.

25

3 The Extensible Agent Behavior Specification Language (XABSL)

If that state is active, the 0_ Sets one parameter of a basic
subsequent option is behavior.

executed.

subsequent-basic-behavior [l;} —en— set-parameter

If that state is active, the subsequent 04 o0 Sets one parameter of a basic
basic behavior is executed. behavior.

m =

A single state in the state
machine of the option. 0..n
If the state is active, this
output symbol is set

xabsl:statement

The decision tree for the An element of a decision tree.
state. It is carried out to Contains either a transition to
determine which state is the a state or an if/else-if/else
next one (can be the same). block.

Figure 3.8:.The syntax of the elemefitate”.

Followed by the optionalcommon-decision-tree” each option has to have at least datate” child
element, which represents a single state of an option’s state machine (cf/fig 3.8). Its first child element is
either a‘subsequent-option’dr a“subsequent-basic-behaviortetermining which subsequent behavior is
executed when this state is active. If the referenced option or basic behavior has parameters, these can be
set with“set-parameter” child elements. If a state does not set all parameters of a subsequent behavior, the
execution engine sets the remaining parameters to zero. The child elements#ttparameter”element

is a decimal expression, which are described later in this section.

After the definition of the subsequent behavior, output symbols can be set by insedingutput-
symbol” child elements. Note that the state machine is carried out first and only the then active state can set
these symbols. It may happen that an option which becomes activated lower in the option graph overwrites
an output symbol. The output symbols are only applied to the software environment when the option graph

was executed completely.

Each state has a decision tree. The task of this decision tree is to determine a transition to a following
state (which can be the same state). Consequently, the leaves of a decision tree are transitions to other states.
The elementdecision-tree” itself is of the type‘statement” (cf. fig.[3.9). A“statement” can be either an
if, else-if, else block or a transition to a state. Ttansition-to-state” element represents a transition to

another state.

26

3.3 The XABSL Language

} xabsl:conditional-statement

1
|
I = |
|

The first condition thatis - — — — — — — — — —
checked for that choice.

S —

1
} xabsl:conditional-statement |

o - x |

oo —mm— else-if [‘ |
SeiiNg el |

0..n Conditions are checked if L |

preceding if/else-if conditions
fail.

statement [} = ME = xabsl:statement

An element of a decision tree. Executed if all if /else-if An element of a decision tree.
Contains either a transition to conditions fail. Contains either a transition to
a state or an if /else-if /else a state or an if/else-if/else
block. block.

transition-to-state

A transition to another (or the
same) state.

Figure 3.9:The syntax of the groufstatement”. Amongst others, the eleméiatecision-tree” is of this type.

An if, else-if, else block consists of &ii” , optional“else-if” and an‘else” element. Théif” and the
“else-if” elements both have‘aondition” child element and a statement which is executed if the condition
is true. The statement itself is again either a if/else-if/else block or a transition to a state, which allows for
complex nested expressions. Tlendition” element has a Boolean expression (cf. next section) as a child

element.

3.3.3 Boolean and Decimal Expressions

A “boolean-expressioncan be one of the elements shown in figure 3.10bdolean-input-symbol-ref”
references a Boolean input symbol. The elenfemumerated-input-symbol-comparisortompares the
value of an enumerated input symbol with a given enumerated value. The eléamitsand“or” repre-
sent the Boolea& & and|| operators and have at least tfbmolean-expressionthild elements. In contrast,
“not” has only onéboolean-expression’thild element and represents the Booléaperator.

The elements'equal-to”, “not-equal-to”, “less-than”, “less-than-or-equal-to’; “greater-than”, and
“greater-than-or-equal-to”are the==, ! =, <, <=, > and>= operators. They all have twaecimal-
expression’child elements, which are described below.

The expressiorisubsequent-option-reached-target-statis’ true when the subsequent behavior of the
state is an option and when the active state of the subsequent option is marked as a target state. Otherwi

this statement is false. It can be used to give a feed-back to higher options that a behavior is finished.

27

3 The Extensible Agent Behavior Specification Language (XABSL)

—{ boolean-input-symbol-ref

A reference to a boolean input
symbol.

—{ enumerated-input-symbol-comparis...|

A comparison for a enumerated input symbol.

m = xabsl:boolean—expression)

The logical "AND’ operator. 2__ A boolean expression.

uE = xabsl:boolean—expressionj
2.0

The logical 'OR’ operator.

xabsl:boolean—expressionj

A boolean expression.

The logical ‘'NOT" operator. A boolean expression.

equal-to [= xabsl:decimal—expression

The numeric '==" operator. A numeric expression.
boolean-expression | not-equal-to [== xabsl:decimal—expression
A boolean expression. The numeric '!=" operator. A numeric expression.

m == xabsl:decimal—expression
—,
The numeric ‘less than' 2 A numeric expression.
operator.
—{ less-than-or-equal-to xabsl:decimal—expression
The numeric 'less than or 2 A numeric expression.

equal to’ operator.

greater-than [= xabsl:decimal—expression

The numeric ‘greater than A numeric expression.

operator.
—{ greater-than-or-equal-to xabsl:decimal—expression
The numeric 'greater than or 2 A numeric expression.

equal to' operator.

—{ subsequent-option-reached-target-s...|

In the subsequent option a target state is active.
If the subsequent option was not active in
during the last execution of the engine, that
condition is false. If the state has a subsequent
basic behavior, the condition is false.

Figure 3.10:The syntax of the groufboolean-expression”’Elements from this group are used inside condi-

tions of decision trees.

28

3.3 The XABSL Language

Elements from thédecimal-expression“group (cf. fig/ 3.11) can be used inside some Boolean expres-
sions and for the parameterization of subsequent behaviors.

A “decimal-input-symbol-ref'references a decimal input symbol."decimal-input-function-call’rep-
resents a call to a decimal input function. For each parameter of the functiaithgparameter” element
must be inserted. If a parameter is not set, the executing engine sets the parameter to zero.

The elementwith-parameter” has a child element from thdecimal-expression’group.

A “constant-ref” references a constant which was defined isyenbols” collection, a‘decimal-value”
is a simple decimal value, e.{.14” , and“option-parameter-ref”references a parameter of the option.

The elementéplus” , “minus”, “multiply” , “divide” , and“mod” stand for the arithmetie-, —, *, / and
% operators. They all have two child elements from‘ithecimal-expression’group.

The elementtime-of-state-execution'tan be used to query how long the state has been already active.
This time is reset when the state was not active during the last execution of the engine. Note that it may
happen that the option activation path above the current option changes without this time being reset (it is
only important that the option and the state were active during the last execution of the engine). Analogical,
elementtime-of-option-execution’represents the time the option has already been active. This time is reset
if the option was not active during the last execution of the engine. It may also happen here that the option
activation path above the current option changes without this time being reset.

The statemeritonditional-expression’works such as an ANSI C question mark operatdicéndition”
which has aoolean-expressioohild element is checked. If the condition is true, the decimal expression
“expressionl”, otherwise'expression2”is returned. It is mainly used to set parameters of subsequent be-

haviors (which have to be decimal) dependent on a condition.

3.3.4 Agents

The file “agents.xml” is the root document of AABSLbehavior specification. It includes all the options and
defines agents. Figure 3/12 shows the structure ¢hifpent-collection” element. It ha&title” , “platform” ,
and“software-environment’elements that are only used for generating the HTML documentation.

With an“agent” element, an agent is declared by referencing a root option from the set of all options.
After the definition of the agents and the included option prototypes, all options that are used by the agents
and all options that are referenced from other options used have to be included inSm#ities” element

using Xlinclude.

29

3 The Extensible Agent Beh

decimal-expression [

A numeric expression.

—{ decimal-input-function-call (=}

avior Specification Language (XABSL)

—{ decimal-input-symbol-ref |

A reference to a decimal input
symbol.

— xabsl:decimal-expressionj

with-parameter =

Specifies on parameter for the
function call.

Calls a decimal input function. o A numeric expression.

A reference to a decimal
constant.

decimal-value

A single decimal value.

—{ option-parameter-ref |

The value of an parameter of
the current option.

== xabsl:decimal—expression)
—/

The numeric '+' operator. A numeric expression.
xabsl:decimal-expression)
The numeric - operator. 2 A numeric expression.

multiply

The numeric " operator.

The numeric '/ operator.

The numeric ‘mod’ operator.

xabsl deumal—expresswn)

A numeric expr ession.

xabsl:decimaI-expressionj

2

= xabsl:decimaI-expressionj
—/

A numeric expression.

A numeric expression.

—{ time-of-state-execution |

A symbol for the time, how
long the current state is already
executed.

—{ time-of-option-execution |

A symbol for the time, how long
the option is already executed.

xabsl:boolean—expression

The boolean expression to
evaluate

A boolean expression.

Figu

30

expression1 [xabsl:decimal—expressionj

The decimal expression that is A numeric expression.
returned when the condition
evaluates true

The decimal expression that is
returned when the condition
evaluates false

—{ conditional-expression [=

Like an ANSI C question mark
operator
(condition?expri:expr2). A
condition is evaluated. If the
condlition is true, expression1 is
returned, otherwise expression2

xabsl:decimal—expression)

A numeric expression.

re 3.11.The syntax of the groufdecimal-expression’

3.4 Mechanisms and Tools

A title for the project.

platform

The platform/robot that the
agent runs on.

e

software-environment ‘

. The software environment in
agent-collection [= that the behavior is

embedded.

A collection of agents and

options that share the same
options, symbols, and basic |
—

behaviors. ~
1.0

—{]xabsl:option-deﬂnitions

Declares all available options of a
agent-collection. They are used

= in options for references to other
options.

Declares all available options of a
agent-collection. They are used
in options for references to other

options.
[optons £ =

Contains all included options
of the agent collection

0.0
A behavior module. Contains
a state machine that selects
between suboptions (other
options) and basic behaviors.

Figure 3.12.The syntax of the elemefwgent-collection”.

3.4 Mechanisms and Tools

XABSLis anXML 1.0[12] dialect that is specified iIKML Schemd24]. Schemas are used instead of DTDs
as only they allow to specify complex identity constraints. For instance, for all decimal input symbols there
is a keydefined which guarantees that the names of the symbols are unique. If inside an option such a

decimal input symbol is referencedkey referencassures that the referenced symbol exists in the key.

An XABSLagent behavior specification is distributed over many files, which helps the behavior developers
to keep an overview over larger agents and to work in parallel. The XML schemas for all the different file

types can be found at theABSLweb site [45].

31

3 The Extensible Agent Behavior Specification Language (XABSL)

S
— . symbols
0o 2
— S
o
) options s b
; : basic
= — behaviors
“agents.xml“ b
Inclusion using XInclude = .
o g od| “options.xml*
Inclusion with external file entities e

Figure 3.13Different file types of arKABSLspecification and include mechanisms.

3.4.1 File Types and Inclusions

Figure 3.13 shows the different file types that are part dfABSLagent behavior specification. Symbol files
contain the definitions of symbols, basic behavior files prototypes for basic behaviors and their parameters,
and option files contain a single option. The file “options.xml” defines prototypes for each option and its
parameters. The file “agents.xml” includes all the option files and defines the agents and their root options.
Two mechanisms for including one XML file into another are used. When usxgrnal file entitiesa
code block, e. g. the file “my-symbols.xml” is defined as an external file entity inside a DTD. At the correct
position in the code it is inserted by for instar&@ySymbols;Most XML editors support this mechanism.
It allows checking the validity of an option inside the XML editor. The disadvantage is that no cascading
inclusions are possible.
With Xinclude[50] a file is directly included into another one with a statement such as<hisiclude
href="another-file.xml"/>. An XiInclude processor later resolves these includes for further processing. The

disadvantage is that most XML editors do not resolve Xinclude statements for validation.

3.4.2 Document Processing

Standard XSLT[[17] transformations are used to generate three types of documert®\B&isource doc-
uments: arintermediate codevhich is executed by th€abslEnginedebug symbolsontaining the names of
all named elements, and an extensive HTML-documentation containing SVG-charts for each agent, option,

and state.

32

3.4 Mechanisms and Tools

multiple behavior files 9 validation
2 intermediate
0 =] code
E E 3 =
—| debug
| |=| symbols
concatenation of all L
“agents.xml* =2 behavior files: k@] HTML/ SVG
“agents.xinclude-processed.xml“ |=| documentation

Figure 3.14Document generation iKABSL

The run-time systenXabslEngineuses an intermediate code instead of parsingdABSLXML files
directly, thus no XML parser is needed. (On many embedded computing platforms XML parsers are not

available due to resource and portability constraints.)

The generated debug symbols contain the names of all options, basic behaviors, parameters, and symbol
They make it possible to implement platform and application dependent debugging tools for monitoring
option and state activations as well as input and output symbols. For instane@hibsi? Behavior Tester
Dialog (cf. fig.[3.16) was integrated into tHRobotControlapplication, the general debug tool of tGer-
manTeam

The HTML documentation helps the developers to understand what their behaviors do. Almost all
information specified in the XML files is clearly visualized, there are SVG charts for each option graph,
state machine, and decision tree. As it would have been nearly impossible to generate these charts direct
with native XSLT transformations (it is very difficult to place nodes and edges such that there is little
overlapping), the “dot” tool of the AT&T Graphviz [26] 9] graph drawing suite was used. This program
takes structural descriptions of the graphs as input and renders charts from it, ensuring a good layout an
little overlappings between objects. As an XML wrapper for the input language of the “dot” todhahe
Markup LanguaggDotML) [44] was developed. Note that the figures| 3.1, 3.2, and 3.3 were generated
automatically fromXABSLdocuments with DotML and “dot”.

Figure|3.14 shows how all the different documents are generated. BecaXg&B&iagent behavior
specification is distributed over many XML files, firstly, all these files are concatenated into a single big file

“agents.xinclude-processed.xml”. Then this file is validated against{ARSLschema. If that was success-

33

3 The Extensible Agent Behavior Specification Language (XABSL)

ful, the XSLT style sheet “generate-intermediate-code.xsl” is applied to “agents.xinclude-processed.xml” to
generate the intermediate code. The debug symbols are created with “generate-debug-symbols.xsl”. Similar
to the XABSLbehaviors, the generated documentation is also distributed over many files. To increase the
compile speed, only for the chang&@BSLsource files the documentation pages are rebuilt. Therefore, 13
different XSLT style sheets exist for the documentation generation.

For the correct call of all the different XSLT style sheets and DotML scripts, a complex Makefile was

developed, which is described in detail on ¥#¥BSLweb si