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Abstract. In the area of agent systems, as throughout in computer science, formal methods

are applied to specify complex systems, to ensure certain properties of a system, or to gener-

ally simplify the development of solutions. In traditional symbolic artificial intelligence, logic

and planning theories are usually used for modelling autonomous agents. But these approaches

turned out to be not applicable for agent systems in highly dynamic environments. Therefore,

mainly in intelligent robotics, theories or formalisms are often not used when programming

agents to perform certain tasks. In this thesis, theExtensible Agent Behavior Specification Lan-

guage(XABSL) is introduced as a pragmatic approach to agent engineering. It does not follow

any agent theory but in return provides a powerful set of tools for the convenient and rapid pro-

gramming of agent behavior. The system was succesfully applied by theGermanTeamin the

RoboCup Sony Four Legged League, resulting in the win of the RoboCup world championship

2004.
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1 Introduction

Multi-agent systems in complex and dynamic environments are a more and more important research subject

both in intelligent robotics and artificial intelligence. In traditional robotics, impressing behaviors have been

realized with simple sensor-actuator loops. Although Brooks [13] showed how to combine these control

programs to achieve more complex behaviors, it is challenging to scale up such systems.

Many agent architectures from classical AI were developed for simplified and artificial environments.

Therefore problems arise when they are confronted with more natural environments. Noisy sensor readings,

unpredictable dynamics, and the uncertainty of actions ask for new sophisticated approaches.

1.1 Goals of this Work

The major goals of this work are the design of a behavior control architecture for autonomous agents in

highly dynamic environments as well as the development of a high-level language for describing agent

behavior following such an architecture. The RoboCup domain [36], a common problem for multi-agent

systems, provides a test bed for that work.

The architecture has to support complex long-term and deliberative decision processes as well as short-

term reactive behaviors. Moreover, it is important that the architecture is able to deal with uncertain environ-

ments where actions can fail. It is necessary that the system is modular to ensure the reusability of behaviors

in different contexts and the extensibility of implementations. The language has to simplify and speed up

the process of agent behavior specification. It should be scalable and easy to understand. Finally, it should

help behavior designers to keep an overview over large behavior implementations.

1.2 Scope

Many agent theories or agent architectures deal with the description of whole agent systems, including

their perception and action capabilities and possibilities to reason how to achieve goals. For example, in the
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1 Introduction

BDI architecture [59, 60] thebeliefs, desires, andintentionsof an agent are modeled. Thebeliefsrepresent

information items of the environment’s state and are updated after each sensing action. Thedesiresof an

agent represent the objectives (or goals) and what priorities or tradeoffs are associated with these objectives.

Reasoning about thedesires, theselection functiondetermines the system’sintentions. Theactionsof the

system are generated based on theintentions.

Some AI researchers approach the problem of generatingintentionsby desireswith modal logic [18, 70].

They try to formalize all interactions between thebeliefs, desires, andintentions, all static and dynamical

constraints of the system, and the impact of the actions on the environment. If such a formalization exists,

intentions can be achieved by applying decision theory. Generating appropriate actions can be seen as a

kind of classical problem solving. However, for agents in complex, highly dynamic, and unpredictable

environments it is a difficult task to cope with the dynamics of the system by means of logic. Logic based

planning algorithms are therefore not in the scope of this work. Gat [27] remarks: “Elevator doors and

oncoming trucks wait for no theorem prover.”

This work deals with the selection of actions from beliefs. Deliberative and reactive decision making

is based on hierarchical plan structures which are pre-defined by behavior designers. It focuses neither on

how thebeliefsof an agent are structured or how they are created nor on how the actions of the agent are

performed.Beliefsand actuator control programs are assumed to exist already in the agent system.

Wooldridge [73, 72] divides the field of intelligent agents into the areas of agent theories, agent architec-

tures, and agent languages. Agent theories are not in the scope of this work and as holistic agents are not

investigated but only the selection of actions, the termsbehavior control architecturesandbehavior control

languagesare used instead of agent architectures and agent languages.

Although the work is related to multi agent systems, it does not deal explicitly with the modeling of agent

communication and negotiation issues (cf. e.g. [30, 69]). Messages that are exchanged between agents can

be seen as additional input and output of an action selection system. It will be shown how agent teams

modeled with the proposed architecture will perform cooperative tasks using communication.

Many approaches deal with either deliberative or reactive path planning. But behaviors which perform

obstacle avoidance or other navigation tasks using such algorithms can be seen as basic skills of an agent

system and will therefore not be dealt with in this work, too.
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1.3 Outline

1.3 Outline

Chapter 2 gives an overview of state-of-the-art agent and behavior control architectures and languages.

Chapter 3 is the central part of this work. It describes a behavior control architecture based on hierarchical

finite state machines1 for action selection. TheExtensible Agent Behavior Specification Language(XABSL)

is introduced as an XML based agent language formalizing that architecture. The language itself, the tools

that were developed in conjunction with the language, and the runtime systemXabslEngineare described.

Although theXABSLsystem is fully explained in this thesis, there is an even more detailed language refer-

ence and the API documentation of theXabslEngineclass library on theXABSLweb site [45].

Chapter 4 shows how theXABSLsystem was applied in the RoboCup robot soccer domain. TheGerman-

Team, a national team consisting of researchers from four German universities, usesXABSLfor its partici-

pation in the RoboCup Sony Four Legged League [62].XABSLhelped the team to win the 2004 RoboCup

world championships. In addition, anXABSLexample implementation was done for theASCII-Soccer[10]

soccer simulation to show that the whole system is independent from the platform of theGermanTeam.

Finally, chapter 5 lists the results ofXABSLbased teams at national and international RoboCup competi-

tions and suggests a few ideas for further improvements.

1.4 Own Contributions

The author developed theXABSLlanguage definition, the tools, and theXabslEngineclass library. Fur-

thermore, the author was the leader of the behavior control group of theGermanTeamand coordinated its

behavior control related attempts.

The behavior architecture was developed in collaboration with Hans-Dieter Burkhard, Matthias Jüngel,

Joscha Bach, Ralf Berger, and Michael Gollin. Matthias Jüngel helped to implement some of the tools. Uwe

Düffert and Thomas R̈ofer provided technical advice and bug fixes. Michael Spranger developed a profiling

tool on top of theXABSLsystem. Max Risler and Matthias Jüngel made suggestions how to improve the

language.

Finally, XABSLcould not have been employed in the Sony Four Legged League had not numerous

members of theGermanTeamimplemented and tuned many behaviors.

1Instead offinite state machine, the termfinite state automaton(FSA) is sometimes used in the literature. Nevertheless, for

consistency with recent own publications and documentations, the termfinite state machinewill be consequently employed in

this thesis.
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1 Introduction

Parts of this work (especially parts of chapter 3 and 4) have already been published by the author in

[46, 45, 15, 20, 62].
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2 Architectures and Languages

The field of behavior control architectures and behavior control languages is very wide. This chapter deals

with those who are in a closer relation to this work. It will be shown that the distinction between architectures

and languages is at times arbitrary as languages are always based on architectures and some architectures

contain precise formalization.

2.1 Behavior Control Architectures

“Agent architectures can be thought of as software engineering models of agents; researchers in this area

are primarily concerned with the problem of designing software or systems that will satisfy the properties

specified by agent theorists.” [72]

Nearly all behavior control architectures are labeled eitherreactiveor deliberativeor both. But there are as

many different usages of these terms as there are different architectures. The weakest notion ofdeliberative

requires that the environment is represented in a persistent state, the world model. Accordingly, all behaviors

that react directly on the sensory inputs are labeled reactive.

Deliberative in a stronger sense means that persistent states of own intentions are used. Decisions are

made not only dependent on a world model but also based on past decisions, which allows to continue

started plans.

The strongest notion of deliberative means that an agent is able to develop abstract plans by reasoning

about the state of the environment, own desires, own action capabilities and their impact on the environment.

This notion is usually related to the termplanning.

Hybrid architecturesare employed when both fast adaptions to changes in the environment as well as

deliberative behaviors are needed. In these architectures, a strict separation into a deliberative and a reactive

component is done. However, it is problematic that there is no general rule that assigns a behavior to one

of these components. Usually, this separation is done dependent on the time consumption of the decision

making methods. All decisions that are more time consuming than allowed in the reactive component are
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2 Architectures and Languages

made by the deliberative component. Architectures in which such a separation is not done but which are

nevertheless able to model both very long-term and short-term behaviors, are hard to classify but are often

labeled reactive.

Besides the distinction in reactive and deliberative, Russel and Norvig [66] propose a different catego-

rization of agent architectures:Simple reflex agentsrespond immediately to percepts,goal based agentsact

so that they will achieve their goals, andutility based agentstry to maximize their own “happiness”.

2.1.1 Behavior-Based Architectures

In reactivebehavior-basedarchitectures [7], behavior control programs are decomposed into a set of distinct

low-level basic skills (basic behaviors) and selection mechanisms that combine these abilities into complex

behaviors.

Each basic behavior is designated for performing a certain specific task. Mostly they are reactive, which

means they do not have any persistent states but react directly to changes in the environment in close sensor-

actuator loops. There are at least three different methods for combining or composing these behaviors.

Continuous Combination of Behaviors. Primitive behaviors can be combined continuously. When

following this approach, all behaviors contribute to the entire agent behavior. For each of them an utility

weight is estimated and then the output values of all behaviors are scaled by their corresponding weights

and simply summed up. For instance, in a mobile robot several navigation behaviors (e.g. “move-to”, “avoid-

obstacles”, “avoid-wall”, etc.) could all provide their desired movement vectors. By scaling them with their

utility weights and summing them up, an overall behavior that reaches a goal, avoids obstacles on the way

there, and keeps distance from walls could emerge.

The AuRAarchitecture [6] gives an example how to to apply this method. However, complex systems

with unsuperimposable actions can not be modeled with this.

Competitive Approaches. Furthermore, the basic behaviors can compete for the control of the agent.

Maes [49] developed an architecture where the primitive behaviors are calledcompetence modules. Each

of these modules has a set of pre- and post-conditions and has to provide anactivation level, an utility

measure for the module in a particular situation. The higher the activation level of a module, the more likely

this module will influence the behavior of the agent. The modules are connected by successor, predecessor,

and conflicter links in aspreading activation network. Active modules inhibit other modules connected

by conflicter links and activate neighbored predecessor and successor modules. The major difficulty for
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2.1 Behavior Control Architectures

applying this architecture is to find appropriate activation functions for each module. It is very hard to tune

these functions so that in all situations the most applicable module is activated most.

A similar and even simpler architecture is thesubsumption architectureby Brooks [13]. In this architec-

ture, thebehaviorsare layered in a hierarchy. Primitive behaviors (such as collision avoidance) reside on

lower layers whereas more high-level behaviors are placed on top of them. Lower layers can inhibit higher

layers to gain control over the behavior of the system.

Finite State Machines. Finally, basic behaviors can be composed withstate basedtechniques [39].

In these architectures, only one of the basic behaviors is active and executed at a time. Behavior selection

is done by usingfinite state machines. The behaviors correspond to states and are selected by transitions

between the states. The transition functions are dependent on the active state, events, changes in time, and

changes in the environment. Arkin [5] uses the termtemporal sequencingfor the method as the behaviors

are performed in sequential order.

Finite state machines exhibit two important advantages: First, it is possible to define a hysteresis between

two states. For example, if there is a transition from states1 to states2 when a certain variable exceeds

a thresholdt, there could be a transition froms2 to s1 when the variable falls belowt − ε. This helps to

stabilize decisions based on noisy sensor readings. Second, as decisions are made different for each state,

only useful successor behaviors are selected.

2.1.2 Hierarchical and Layered Architectures

Many architectures are calledhierarchicalor layered. Usually this means that there are different levels of

abstraction. Lower layers react directly on changes in the sensor readings. The higher the layer, the more

long-term decisions are made and more abstract representations of the environment are used. Often, a sepa-

ration into a deliberative and a reactive layer is done. Sometimes, these layers do not work synchronously,

which means that high-level components are not executed as frequent as low-level ones.

Hierarchical can also mean, that many behaviors are ordered in a hierarchy. This can be seen from two

perspectives: Either, top-level goals or plans can be recursively decomposed into sub goals or sub plans or,

more high-level and complex behaviors can be composed from more low-level and simpler ones (modular-

ity principle). This allows to reuse behaviors in different more high-level contexts. Systems can be easier

developed as behaviors can be tested separately before they are composed to more complex ones. In addi-

tion, such modularity reduces the complexity of planning. It would be difficult to cope with if all decisions
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2 Architectures and Languages

would be made by a holistic system. Behavior hierarchies allow to distribute different decisions into different

modules.

When using finite state machines for decision making, the number of transitions usually exponentially

increases with the number of states. Ordering finite state machines in a hierarchy can reduce the number of

necessary transitions.

2.2 Behavior Control Languages

Specific behavior description languages prove to be suitable replacements to native programming languages

such as C++ when the number and complexity of behavior patterns of an agent increases. They allow for

convenient and fast behavior design and implementations are often easier to scale-up. Visualizations and

other helper tools support the development process. Additionally, some languages provide mechanisms to

prove or guarantee certain agent properties. “Without adequate techniques to support the design process,

such systems will not be sufficiently reliable, maintainable or extensible, will be difficult to comprehend,

and their elements will not be re-usable.” [35]

There are innumerable languages that were developed for certain architectures and platforms. This section

only lists a few noted languages. For an overview and introductions, refer to [47, 53, 31, 42].

2.2.1 The Behavior Language by Brooks

One of the oldest behavior specification languages, theBehavior Language[14], was developed by Brooks to

specify agents following an improved version of the subsumption architecture [13]. It is a subset of Lisp and

has a comparatively large expressivity. The behaviors are implemented in asynchronous processes which

communicate via message passing. Each process contains a set of “real-time rules” that modify certain

variables, send messages, or influence other behaviors. Initially, a process is in a wait state. As soon as the

condition of a rule becomes true, the statements inside a rule are evaluated sequentially and the process

returns into the wait state. If the rule recursively contains other rules, the control remains inside this rule. All

rules are assumed to run in parallel and asynchronously. But there is also a possibility to declare exclusive

rules. When the condition of such a rule becomes true, no other rules are evaluated.

Such a rule set can be compiled into a finite state machine, which is then either compiled into the assem-

bler code of an embedded system or into Common Lisp code for simulation purposes. The compiler also

organizes the serialization of the concurrent processes as real concurrency is often not possible on embedded
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2.2 Behavior Control Languages

systems.

The language convinces by its complexity and well-chosen design. The rich set of usable mechanisms

makes it a good choice for developing systems following the subsumption architectures.

2.2.2 COLBERT

Much simpler is theCOLBERTlanguage [37] which was developed by Konolige for reactive control in

theSaphira[38] framework.COLBERTis a subset of ANSI C with a few extensions for robot control. An

interpreter executes the language directly, so that programs can be modified during execution. A debugging

tool allows for monitoring the current state activations. Source code in this language looks similar to usual

C programs, for instance there arewhile andif statements. Function calls in control blocks, that perform

actions, correspond to states of a finite state machine. The control remains in the state until the behavior is

finished. In addition, external conditions such as timeouts or other events can be specified to influence the

control.

The language follows a simple and straightforward approach. However, because of its simplicity it could

be difficult to apply it in more complex systems.

2.2.3 GOLOG

GOLOGby Lakemeyer and Levesque [43] is the most widely known logic based behavior control language.

It is based on the situation calculus and has a syntax similar to Prolog, with extensions for procedural

constructs. The actions of the system are generated by theorem proving as in a Prolog interpreter. Although

Dylla et al. [22] showed how to use GOLOG on real robots, it is very hard to apply this language to systems

in dynamic environments. The first problem is that the real world has to be translated into accurate symbolic

descriptions based on logical terms, which can be difficult for uncertain environments. Second, the impact

of actions on the environment and thereby on the world state of an agent has to be also represented with

logic, which is even more difficult. Finally, speed is a problem when using Prolog interpreters in real-time

systems.

2.2.4 UML Statecharts for Multiagent Specification

Obst and Stolzenburg et al. employ UML statecharts for multi-agent specification [58, 4, 54]. Hierarchies

of state machines are used for action selection. Transition between states are equipped with simple vari-

ables and predicates connected by simple Boolean expressions. Although the authors claim that the UML
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s0

pass ball

have ball ^
teammate in passing distance /

w2
w3

w0
w1

run
teammate in passing distance /
opponent has ball ^

s0

w4

w3

have ball ^w5
w6 teammate in passing distance /

pass ball

w1

w0

go to pass position
teammate has ball /
teammate in passing distance ^

dribble
teammate in passing distance /

have ball ^

s1

ball approaching /
get ball

double passing

s2

w4

s1

s2

w2 ball approaching /
get ball

Figure 2.1:UML statechart for two agents involved in a double pass (from [58]). Two concurrent sets of

states are shown together with conditions for transitions and actions that are carried out during

transitions.

specifications are translated “almost automatically” into a running implementation (into Prolog), the main

purposes of the modeling are the verification and formal analysis of the high level behaviors of an agent

system.

The interesting notion of concurrent states (cf. fig. 2.1) allows for modeling and analyzing cooperative

behaviors performed by pairs of agents. In addition, applying UML statecharts allows them to use existing

graphical UML editing tools.

2.2.5 The Configuration Description Language

From the author’s point of view, the best and most advanced language for behavior specification in the related

work is theConfiguration Description Language(CDL) as a part of theMissionLabsystem [48, 40]. In this

language, reactive stimulus-response behaviors perform the actions of a system and are implemented in a

native programming language (C++). Since these primitive behaviors all fulfill a specific task autonomously

and in interaction with the environment, the authors associate them with autonomousatomic agentsas

introduced in Minsky’s theory of agent societies [51].

Assemblage agentsfor more complex tasks are constructed by combining and coordinating subordinated

agents (basic behaviors). Inside the assemblage agents, state machines are responsible for selecting one of
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2.2 Behavior Control Languages

Figure 2.2:The graphicalConfiguration Editor(CfgEdit) as a part of theMissionLabtoolset (from [48]). A

state machine describing the task of a trash collecting robot is shown.

the subordinated behaviors. Each state in the state machine of the agent denotes a member agent which

has the control over the actions of the systems while the state is active. The transitions between states are

triggered by perceptual signals. Such assemblage agents can be treated as primitive behaviors to construct

more complex assemblages. The possibility for constructing assemblages recursively from others allows to

reuse well-designed behaviors in different contexts.

CDL is not only a language for behavior specification but also for the design of complete agent systems.

Different levels of abstraction allow to bind developed solutions to different robotic platforms. However,

a minor disadvantage of applying CDL could be that the agent architecture of the own system has to be

largely adapted to the MissionLab system, which is often only possible when developing a new system from

scratch.

The graphicalConfiguration Editor(CfgEdit, cf. fig. 2.2) is the most interesting feature of the system.

It allows to create recursive assemblies graphically. In addition, debug tools and a robot simulator are inte-

grated.
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3 The Extensible Agent Behavior Specification

Language (XABSL)

The Extensible Agent Behavior Specification Language (XABSL)[46] is an XML based language for be-

havior engineering. It simplifies the process of specifying complex behaviors and supports the design of

both very reactive and long term oriented agent behaviors. It is not only a behavior modeling or description

language – instead, behaviors written inXABSLcan be transformed automatically into an intermediate code

which is executed directly on a target platform using theXabslEngineclass library. Together with the inter-

preter and a variety of tools for visualization and debugging, behavior developers get a complete system for

behavior specification, documentation, testing, execution, and debugging. The wholeXABSLsystem can be

downloaded for free from theXABSLweb site [45].

Section 3.1 describes hierarchical finite state machines for action selection as the behavior control ar-

chitecture behindXABSL. Section 3.2 gives an overview of theXABSLlanguage and section 3.3 provides

a brief introduction to the language elements and the syntax. Section 3.4 deals with some technical issues

related to the use of XML techniques and the tools that were developed in conjunction withXABSL. Section

3.5 describes the runtime systemXabslEngine. Finally, section 3.6 relates the architecture and the language

to other approaches.

3.1 Hierarchies of Finite State Machines

In XABSL, behavior modules (options) that contain state machines for decision making are ordered in a

hierarchy, theoption graph, with atomicbasic behaviorsat the leaves.

13
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3.1.1 The Option Graph

An XABSLbehavior specification consists of a set of behavior modules calledoptionsand a set of distinct

simple actions (skills) calledbasic behaviors. Both options and basic behaviors can have parameters. The

options are ordered in a hierarchy – complex behaviors are composed from simpler ones. Each option uses

a set of other subordinated options and/or basic behaviors to realize a certain behavior.

For example in figure 3.1, the option“grab-ball-with-head” (a behavior for grabbing and holding the

ball between the front legs and the head of an Aibo robot) is composed of the option“approach-ball” (a

behavior for walking to the ball) and the basic behavior“walk” (a behavior for blind walk).

Each basic behavior and option can be used from more than one other option. This allows to reuse the

same behaviors in different contexts. E.g. in figure 3.1 a few other options than“grab-ball-with-head” use

the option“approach-ball” . This helps behavior developers to modularize their behaviors. In the example,

only one behavior for ball approaching was developed and fine-tuned and then used by very different other

options.

The option hierarchy can be seen as a rooted directed acyclic graph, called theoption graph. The basic

behaviors are the leaves (terminal nodes) of this graph. The “topmost” option (at the root of the graph) is

called theroot option. Note that inXABSLit is possible to specify option graphs that contain loops (and are

for this reason not acyclic). But the runtime system is able to detect such loops at startup and denies work if

the graph is not acyclic.

In the architecture, action selection means to activate, parameterize, and execute one of the basic

behaviors. Therefore, the root option (which is always active) activates and parameterizes one of its

subsequent options, this subsequent option again activates and parameterizes one of its subsequent options

or basic behaviors and so on until a basic behavior is activated, parameterized, and executed. As the option

graph is directed and acyclic, always exactly one of the basic behaviors is reached and executed.

In XABSL, a subset (sub-graph) of the options and basic behaviors which is spanned by a specially marked

option, theroot option, is called anagent. (As the option graph does not need to be connected completely,

it is not possible to determine a single root option of the graph –agentsmark the root options of different

trees.)

14



3.1 Hierarchies of Finite State Machines

Figure 3.1:An example for an option graph from the robot soccer domain (the ball handling part of the

GermanTeam’s soccer behaviors for the world championships 2004 in Lisbon). Boxes denote

options, ellipses denote basic behaviors. The edges show which other option or basic behavior

can be activated from within an option. The thick edges mark one of the many possible option

activation paths. The internal state machine of option“grab-ball-with-head” (marked with the

dashed rectangle) is shown in figure 3.2.
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Figure 3.2:An example for an option’s internal state machine (the option“grab-ball-with-head” from the

example in figure 3.1). Circles denote states, the circle with the two horizontal lines denotes the

initial state, the double circle denotes a target state. An edge between two states indicates that

there is at least one transition from one state to the other. The dashed edges show which other

option or basic behavior becomes activated when the corresponding state is active. The decision

tree of state“grab” (marked with the dashed rectangle) is shown in figure 3.3.
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Figure 3.3:An example for a decision tree of a state (state“grab” of option“grab-ball-with-head” in figure

3.2). The leaves of the tree are transitions to other states. The dashed circle denotes a transition to

the same state. The pseudo code of that decision tree is shown in figure 3.4.

3.1.2 State Machines

Within options, the activation of subordinated behaviors is done by finite state machines. Figure 3.2 shows an

example of such a state machine. In each option, exactly one state is marked as theinitial state. This state gets

activated when the option becomes newly activated. An arbitrary number of states can be declared astarget

states. This allows to indicate that a behavior is finished as higher options can query whether a subsequent

option reached a target state. Each state is connected to exactly one subsequent option or subsequent basic

behavior. Note that more than one state can be connected to the same subsequent option or basic behavior.

Always exactly one state of an option is active. This state determines, which of the subordinated behaviors

is activated and how its parameters are set.

Each state has adecision tree, which selects a transition to either another or the same state. Figure 3.3 gives

an example for such a decision tree. For the decisions, the following information can be used: Parameters

passed by higher options, the world state, other sensory information, and messages from other agents. As

timing is often important, it can also be taken into account how long the state and the option are already
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Figure 3.4:The pseudo code of the decision tree of state“grab” (cf. fig. 3.3).

active. In addition, the success of a subsequent option can be tested by querying whether the subsequent

option reached one of its target states.

As each state has its own decision tree, the decisions are made not only dependent on the representation

of environment’s state but also on the decisions that were done in the past. When the active state is taken

into account, hysteresis functions between states are possible. That means if there is a transition from state

A to stateB for a certain condition, this condition can be different than for the transition fromB to A. Thus,

behaviors can be preferred once they were selected to avoid oscillations.

In the robot soccer example from figure 3.2, the option“grab-ball-with-head” is initially in the state

“approach-ball” . As long as the state is active, the subsequent option“approach-ball” is activated with

certain parameters, making the robot move towards the ball. As soon as the ball gets closer than a threshold,

the decision tree of state“approach-ball” selects a transition to state“grab” . State“grab” becomes the

active state and the subsequent basic behavior“walk” is executed with parameters such that the robot walks

onto the ball. If it somehow happens that during that the ball gets farer away than another, the decision tree

of state“grab” selects a transition back to state“approach-ball” . Otherwise, after a certain time a transition

to state“continue-grab” is selected (cf. fig. 3.4).
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3.1.3 Interaction with the Environment

To access the information about the world that is needed for decision making, symbolic representations are

used. The world model of the agent system is divided into simple and non-structured information items,

called theinput symbols. In the ball grabbing example, amongst others the symbol“ball.seen.distance”is

used to reference the distance to the seen ball in the world model.

The main actions of the agent system are controlled by the basic behaviors. It does not matter if these

actions are generated completely reactively using closed sensor-actuator loops or if intermediate represen-

tations such as a world model are used in addition. In embodied agents, the basic behaviors usually control

the agent’s locomotion system. E.g. in the soccer behaviors of theGermanTeam, the basic behaviors were

used to control all leg movements of the robots (walking and kicking).

Besides the execution of basic behaviors, the environment can be influenced by setting special requests,

the output symbols. Each state within an option can set such output symbols to certain values to control

perception processes or additional actuators. For instance, for the robots of theGermanTeam, an important

actuator independent from the leg movements is the head. The output symbol“head-control-mode”is used

to set a general mode how to move the head independent from the selected basic behavior. This mode is

then used by other parts of the software to control the head movements. But also LED and sound output and

messages to team mates are triggered with output symbols.

3.1.4 The Execution of the Option Hierarchy

An XABSLbehavior implementation is always a part of a wider agent program. The surrounding software

has to process the sensor readings, build up (if necessary) a world model, manage the communication to

other agents, control the actuators and so on. At some point in thissense-think-act cycle, the program passes

the control to theXABSLsystem to execute the option graph. Before, all data needed for decision making

have to be up to date. Afterwards, the actions generated by the basic behaviors and the additional requests

set by the output symbols have to be (processed and) sent to the actuators of the agent system.

Each time the option graph is executed, a basic behavior becomes selected and executed. TheXABSL

system has to be executed as frequent as required for the reactivity of the action system. Usually, it is

called as often as new data can be obtained from the agent’s main sensor. For instance on the Aibo robots

of theGermanTeam, theXABSLbehaviors are always executed after a newly perceived image was processed.

The execution of the option graph starts from the root option (cf. sect. 3.1.1) of the agent. The decision
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tree of the active state of the root option is executed to determine the next active state, which can of course

be the same as before. For the subsequent option of the active state, again the decision tree of the active state

is executed and so on until the subsequent behavior of a state is a basic behavior.

Each time a decision tree activates another or the same state, the newly activated state sets the parameters

of the subsequent option or basic behavior and the state’s output symbols. Note that output symbols that

were set during this process can be overwritten by options lower in the option graph. If an option was not

active during the last execution of the option graph, the state machine is reset (the initial state is activated).

The option activation path(cf. fig. 3.1) follows the path from the root option to the currently activated

basic behavior through all active options. As each option activates only one subsequent behavior at a time

and as the graph is rooted, directed, and acyclic, such a path exists and contains no branches. Thetime

of option activationis the time, how long an option was consecutively activated. This time is set to zero

when an activated option was not active during the last execution of the option graph. Accordingly, thestate

execution timeis the time how long the active state was consecutively activated.

The option activation path including the option activation time, active state, and state activation time for

all of its options constitute the global state of anXABSLagent. The generated actions of the system depend

on this state, the perceptions and the world model (and, if the basic behaviors have persistent states, on these

states).

3.2 Behavior Specification in XML

Implementing such an architecture totally in C++ proved to be error prone and not very comfortable [15].

The source code became very large and it was quite hard to extend the behaviors. Therefore, theExtensi-

ble Agent Behavior Specification Language(XABSL) was developed to simplify the behavior engineering

process.

TheXABSLlanguage and supporting tools are completely based on XML techniques. Figure 3.5 shows

an example of anXABSLXML notation. The reasons to use XML instead of defining a new grammar from

scratch were the big variety and quality of existing editing, validation, and processing tools, the possibility

of easy transformation from and to other languages as well as the general flexibility of data represented in

XML languages. The syntax and even all constraining relations between the language elements are specified

in XML schema, so no other compile or validation tools than standard XSLT / XML processors are needed1.

1The only exception is the check for loops in the option graph. This can not be done by validating documents against XML
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3.2 Behavior Specification in XML

Figure 3.5:An example for anXABSLXML notation: a source code fragment for the state“grab” (cf. fig. 3.3)

of option“grab-ball-with-head” (cf. fig. 3.2).
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Many XML Editors are able to check whether anXABSLdocument is valid at runtime. A high validation

and compile speed results in short change-compile-test cycles.

Standard XSLT transformations are used to compileXABSLdocuments to an intermediate code for the

runtime system and to generate extensive documentations. Note that the figures 3.1, 3.2, 3.3, and 3.4 were

generated automatically from the XML source in figure 3.5.

An aftereffect of this restriction to standard XML technologies and tools is that the language had to be

adapted to existing tools to some extend. For example, some constructs had to be introduced only for the

compatibility with the used XML editor. And, which is also not typical for a programming language, there

is a relatively strict distribution of language elements onto different file types, which is required for efficient

processing of the data (in previous versions ofXABSL, the complete specification of the behaviors was in

only one file, which made editing very slow).

Agent behavior specifications based on the architecture introduced in the previous section can be com-

pletely described inXABSL. There are language elements for options, their states, and their decision trees.

Boolean logic (||, &&, !, ==, ! =, <, <=, >, and>=), simple arithmetic operators (+, −, ∗, /, and%),

and conditional decimal expressions (comparable to the ANSI C question mark operator,a ? b : c) can be

used for the specification of decision trees and parameters of subsequent behaviors. Custom arithmetic func-

tions (e.g.“distance-to(x,y)”) that are not part of the language can be easily defined and used in instance

documents.

Symbolsare defined inXABSLinstance documents to formalize the interaction with the software environ-

ment. Interaction means access to input functions and variables (e.g. from the world model) and to output

functions (e.g. to set requests for other parts of the information processing). For each variable or function that

one wants to use in conditions, a symbol has to be defined. This makes theXABSLframework independent

from specific software environments and platforms. An example:

<decimal-input-symbol name="ball.x" measure="mm"

description="The absolute x position on the field"/>

<decimal-input-symbol name="utility-for-dribbling"

measure="0..1" description="Utility for dribbling"/>

<boolean-input-symbol name="goalie-should-jump-right"

description="A ball rolls along to the right"/>

Schema and is therefore checked by the runtime system at startup.
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The first symbol”ball.x” simply refers to a variable in the world state of the agent system,”utility-for-

dribbling” stands for a member function of an utility analyzer and”goalie-should-jump-right”represents a

complex predicate function that determines whether a fast moving ball is headed to the right portion of the

own goal. In options, these symbols then can be referenced.

The developer may decide whether to express complex conditions inXABSLby combining different input

symbols with boolean and decimal operators or by implementing the condition as an analyzer function in

C++ and referencing the function via a single input symbol.

As thebasic behaviorsare written in C++, prototypes and parameter definitions have to be specified in

anXABSLdocument so that states can reference them.

3.3 The XABSL Language

This section gives a brief introduction to the syntax and the semantics of theXABSLlanguage. Thereby, the

formal structure of the grammar is, as usual in the XML world, displayed with syntax diagrams (e.g. fig.

3.6) instead of textual representations such as EBNF or others. A complete language reference can be found

at theXABSLweb site [45].

3.3.1 Symbols, Basic Behaviors and Option Definitions

Symbols, basic behaviors, and option definitions are referenced from inside options. In order that it can

be checked whether a referenced symbol (or option parameter etc.) exists, they all have to be declared in

definition files (comparable to header files in C++).

First, there are definition files for symbols. There can be many of them for grouping symbols thematically.

The element“symbols” is the root element of such a symbol file (cf. fig. 3.6).XABSLhas six different

symbol types that can be declared in arbitrary order inside a symbols element: A“boolean-input-symbol”

represents a symbol for a Boolean, and a“decimal-input-symbol” a symbol for a decimal variable or

function (theXabslEngineuses the data type double for decimal values). Besides the attribute“name” ,

which is the id of the symbol and which is referenced from inside options, it has additional attributes that

are needed for the generation of the HTML documentation. A“decimal-input-function” is a prototype

for a parameterized decimal function. Each parameter of a function is defined in a separate“parameter”

child element. The element“enumerated-input-symbol”represents a symbol for an enumerated variable

or function. Each enumerated item is defined in a single“enum-element”child element. Output symbols
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Figure 3.6:The syntax of the element“symbols”.

are declared with“enumerated-output-symbol”, like the“enumerated-input-symbol”element with“enum-

element”child elements. The element“constant” defines a decimal constant.

Basic behaviors are written in C++. Nevertheless, in basic behavior files, a prototype has to be declared

for each of them. The element“basic-behaviors” (cf. fig. 3.7) is the root element of such a file and has

to have at least one child element of the type“basic-behavior”, which defines a prototype for a basic

behavior. Optionally it has“parameter” child elements which declare a parameter that can be passed to the

corresponding basic behavior written in C++.

Every option is encapsulated in an own file. To be able to validate a single option (e. g. the existence of

a referenced subsequent option), there must be prototypes for all other options. Therefore, in eachXABSL

agent behavior specification a file named “options.xml” has to exist. It has an“option-definitions” (cf. fig.

3.7) root element. Inside,“option-definition” elements define a prototype for an option. As the“basic-
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Figure 3.7:The syntax of the element“option” .

behavior” element, it can have“parameter” child elements that specify parameters of an option.

3.3.2 Options and States

The root element of an option file is the“option” element (cf. fig. 3.7). Inside that, the files for all referenced

symbol definitions and basic behavior and option prototypes are included using a DTD include mechanism

(cf. sect. 3.4).

After the included“symbols”, “basic-behaviors”, and“option-definitions” child elements, a“common-

decision-tree”child element can follow. This is a decision tree which is carried out before the decision tree

of the active state. If no condition of the common decision tree proves to be true, the decision tree of the

active state is carried out. This can be used to reduce the complexity of implementation when the conditions

for a transition are same in each state. If the common decision tree uses expressions that are specific for a

state (“time-of-state-activation”or “subsequent-option-reached-target-state”), these expressions refer to

the state that is currently active. The child elements of a“common-decision-tree”are the same as in the

normal decision tree of a state, which is explained later in this section.
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Figure 3.8:The syntax of the element“state” .

Followed by the optional“common-decision-tree”, each option has to have at least one“state” child

element, which represents a single state of an option’s state machine (cf. fig 3.8). Its first child element is

either a“subsequent-option”or a“subsequent-basic-behavior”, determining which subsequent behavior is

executed when this state is active. If the referenced option or basic behavior has parameters, these can be

set with“set-parameter”child elements. If a state does not set all parameters of a subsequent behavior, the

execution engine sets the remaining parameters to zero. The child element of the“set-parameter”element

is a decimal expression, which are described later in this section.

After the definition of the subsequent behavior, output symbols can be set by inserting“set-output-

symbol”child elements. Note that the state machine is carried out first and only the then active state can set

these symbols. It may happen that an option which becomes activated lower in the option graph overwrites

an output symbol. The output symbols are only applied to the software environment when the option graph

was executed completely.

Each state has a decision tree. The task of this decision tree is to determine a transition to a following

state (which can be the same state). Consequently, the leaves of a decision tree are transitions to other states.

The element“decision-tree” itself is of the type“statement” (cf. fig. 3.9). A “statement” can be either an

if, else-if, else block or a transition to a state. The“transition-to-state” element represents a transition to

another state.
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Figure 3.9:The syntax of the group“statement”. Amongst others, the element“decision-tree” is of this type.

An if, else-if, else block consists of an“if ” , optional“else-if” and an“else” element. The“if ” and the

“else-if” elements both have a“condition” child element and a statement which is executed if the condition

is true. The statement itself is again either a if/else-if/else block or a transition to a state, which allows for

complex nested expressions. The“condition” element has a Boolean expression (cf. next section) as a child

element.

3.3.3 Boolean and Decimal Expressions

A “boolean-expression”can be one of the elements shown in figure 3.10. A“boolean-input-symbol-ref”

references a Boolean input symbol. The element“enumerated-input-symbol-comparison”compares the

value of an enumerated input symbol with a given enumerated value. The elements“and” and“or” repre-

sent the Boolean&& and|| operators and have at least two“boolean-expression”child elements. In contrast,

“not” has only one“boolean-expression”child element and represents the Boolean! operator.

The elements“equal-to” , “not-equal-to”, “less-than”, “less-than-or-equal-to”, “greater-than”, and

“greater-than-or-equal-to”are the==, ! =, <, <=, > and>= operators. They all have two“decimal-

expression”child elements, which are described below.

The expression“subsequent-option-reached-target-state”is true when the subsequent behavior of the

state is an option and when the active state of the subsequent option is marked as a target state. Otherwise

this statement is false. It can be used to give a feed-back to higher options that a behavior is finished.
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Figure 3.10:The syntax of the group“boolean-expression”. Elements from this group are used inside condi-

tions of decision trees.
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Elements from the“decimal-expression”group (cf. fig. 3.11) can be used inside some Boolean expres-

sions and for the parameterization of subsequent behaviors.

A “decimal-input-symbol-ref”references a decimal input symbol. A“decimal-input-function-call”rep-

resents a call to a decimal input function. For each parameter of the function, a“with-parameter” element

must be inserted. If a parameter is not set, the executing engine sets the parameter to zero.

The element“with-parameter” has a child element from the“decimal-expression”group.

A “constant-ref” references a constant which was defined in a“symbols” collection, a“decimal-value”

is a simple decimal value, e. g.“3.14” , and“option-parameter-ref”references a parameter of the option.

The elements“plus” , “minus” , “multiply” , “divide” , and“mod” stand for the arithmetic+, −, ∗, / and

% operators. They all have two child elements from the“decimal-expression”group.

The element“time-of-state-execution”can be used to query how long the state has been already active.

This time is reset when the state was not active during the last execution of the engine. Note that it may

happen that the option activation path above the current option changes without this time being reset (it is

only important that the option and the state were active during the last execution of the engine). Analogical,

element“time-of-option-execution”represents the time the option has already been active. This time is reset

if the option was not active during the last execution of the engine. It may also happen here that the option

activation path above the current option changes without this time being reset.

The statement“conditional-expression”works such as an ANSI C question mark operator. A“condition”

which has aboolean-expressionchild element is checked. If the condition is true, the decimal expression

“expression1”, otherwise“expression2” is returned. It is mainly used to set parameters of subsequent be-

haviors (which have to be decimal) dependent on a condition.

3.3.4 Agents

The file “agents.xml” is the root document of anXABSLbehavior specification. It includes all the options and

defines agents. Figure 3.12 shows the structure of the“agent-collection” element. It has“title” , “platform” ,

and“software-environment”elements that are only used for generating the HTML documentation.

With an “agent” element, an agent is declared by referencing a root option from the set of all options.

After the definition of the agents and the included option prototypes, all options that are used by the agents

and all options that are referenced from other options used have to be included inside the“options” element

using XInclude.
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Figure 3.11:The syntax of the group“decimal-expression”.
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Figure 3.12:The syntax of the element“agent-collection”.

3.4 Mechanisms and Tools

XABSLis anXML 1.0[12] dialect that is specified inXML Schema[24]. Schemas are used instead of DTDs

as only they allow to specify complex identity constraints. For instance, for all decimal input symbols there

is a key defined which guarantees that the names of the symbols are unique. If inside an option such a

decimal input symbol is referenced, akey referenceassures that the referenced symbol exists in the key.

An XABSLagent behavior specification is distributed over many files, which helps the behavior developers

to keep an overview over larger agents and to work in parallel. The XML schemas for all the different file

types can be found at theXABSLweb site [45].
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Figure 3.13:Different file types of anXABSLspecification and include mechanisms.

3.4.1 File Types and Inclusions

Figure 3.13 shows the different file types that are part of anXABSLagent behavior specification. Symbol files

contain the definitions of symbols, basic behavior files prototypes for basic behaviors and their parameters,

and option files contain a single option. The file “options.xml” defines prototypes for each option and its

parameters. The file “agents.xml” includes all the option files and defines the agents and their root options.

Two mechanisms for including one XML file into another are used. When usingExternal file entities, a

code block, e. g. the file “my-symbols.xml” is defined as an external file entity inside a DTD. At the correct

position in the code it is inserted by for instance&mySymbols;. Most XML editors support this mechanism.

It allows checking the validity of an option inside the XML editor. The disadvantage is that no cascading

inclusions are possible.

With XInclude[50] a file is directly included into another one with a statement such as this:<xinclude

href=”another-file.xml”/>. An XInclude processor later resolves these includes for further processing. The

disadvantage is that most XML editors do not resolve XInclude statements for validation.

3.4.2 Document Processing

Standard XSLT [17] transformations are used to generate three types of documents fromXABSLsource doc-

uments: anintermediate codewhich is executed by theXabslEngine, debug symbolscontaining the names of

all named elements, and an extensive HTML-documentation containing SVG-charts for each agent, option,

and state.
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Figure 3.14:Document generation inXABSL

The run-time systemXabslEngineuses an intermediate code instead of parsing theXABSLXML files

directly, thus no XML parser is needed. (On many embedded computing platforms XML parsers are not

available due to resource and portability constraints.)

The generated debug symbols contain the names of all options, basic behaviors, parameters, and symbols.

They make it possible to implement platform and application dependent debugging tools for monitoring

option and state activations as well as input and output symbols. For instance, theXabsl2 Behavior Tester

Dialog (cf. fig. 3.16) was integrated into theRobotControlapplication, the general debug tool of theGer-

manTeam.

The HTML documentation helps the developers to understand what their behaviors do. Almost all

information specified in the XML files is clearly visualized, there are SVG charts for each option graph,

state machine, and decision tree. As it would have been nearly impossible to generate these charts directly

with native XSLT transformations (it is very difficult to place nodes and edges such that there is little

overlapping), the “dot” tool of the AT&T Graphviz [26, 9] graph drawing suite was used. This program

takes structural descriptions of the graphs as input and renders charts from it, ensuring a good layout and

little overlappings between objects. As an XML wrapper for the input language of the “dot” tool, theDot

Markup Language(DotML) [44] was developed. Note that the figures 3.1, 3.2, and 3.3 were generated

automatically fromXABSLdocuments with DotML and “dot”.

Figure 3.14 shows how all the different documents are generated. Because anXABSLagent behavior

specification is distributed over many XML files, firstly, all these files are concatenated into a single big file

“agents.xinclude-processed.xml”. Then this file is validated against theXABSLschema. If that was success-
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ful, the XSLT style sheet “generate-intermediate-code.xsl” is applied to “agents.xinclude-processed.xml” to

generate the intermediate code. The debug symbols are created with “generate-debug-symbols.xsl”. Similar

to theXABSLbehaviors, the generated documentation is also distributed over many files. To increase the

compile speed, only for the changedXABSLsource files the documentation pages are rebuilt. Therefore, 13

different XSLT style sheets exist for the documentation generation.

For the correct call of all the different XSLT style sheets and DotML scripts, a complex Makefile was

developed, which is described in detail on theXABSLweb site [45].

3.5 The XabslEngine Class Library

TheXabsl2Engineis theXABSLruntime system. It is written in plain ANSI C++ [23] and does not use any

extensions such as the STL [55]. It is platform and application independent and can be easily employed on

any robotic platform. To run the engine in a specific software environment, only two classes (for file access

and error handling) have to be derived from abstract classes.

The engine parses and executes the intermediate code that was generated fromXABSLdocuments. It links

the symbols from the XML specification that are used in the options and states to the variables and functions

of the agent platform. Therefore, for each used symbol an entity in the software environment has to be

registered to the engine. While options and their states are represented in XML, basic behaviors are written

in C++. They have to be derived from a common base class and to be registered at the engine. The engine

provides extensive debugging interfaces for monitoring the activation of options and states, the values of the

symbols, and the parameters of options and basic behaviors. Instead of executing the engine from the root

option, single options and basic behaviors can be tested separately.

A complete API documentation of the class library is available at theXABSLweb site [45].

3.5.1 Running the Xabsl2Engine on a Specific Target Platform

As the class library is application and platform independent, message and error handling functions as well

as file access routines have to be implemented externally.

First, one has to declare a message and error handling class that is derived fromXabsl2ErrorHandler.

This class has to implement theprintMessage()andprintError() function. The engine uses that class to

state errors and to raise error messages. The Boolean variable “errorsOccurred” can be used to determine

whether errors occurred during the creation or execution of the engine.
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Afterwards, a class that gives the engine a read access to the intermediate code has to be derived from

Xabsl2InputSource. The code does not inevitably have to be read from a file, but can also be read from a

memory region or any other stream. The pure virtual functionsopen(), close(), readValue(), andreadString()

have to be implemented.

The intermediate code contains comments (//...) that have to be skipped by the read functions:

// multiply (6)

6

// decimal value (0): 52.5

0 52.5

// reference to decimal symbol (1) ball.y

1 13

The comments have to be treated as in C++ files (new line ends a comment). In the example only “6 0

52.5 1 13” has to be read from the file.

Finally, a static function that returns the system time in milliseconds has to be defined, e.g.:static unsigned

long getSystemTime().

3.5.2 Registering Symbols and Basic Behaviors

After creating an instance of theXabsl2Engineby passing a reference to an error handler derivate and a

pointer to the time function as parameters, all the symbols and basic behaviors can be registered at the

engine. Note that this has to be done before the option graph is created.

As the behaviors written inXABSLuse symbols to interact with the software environment of the agent

system, for each of these symbols the corresponding variable or function has to be registered to the engine.

The following example binds the variableaDoubleVariableto the symbol ”a-decimal-symbol” which was

defined in theXABSLagent behavior specification:

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",

&aDoubleVariable);

If the value of the symbol is not represented by a variable but by a function, this function has to be

registered at the engine. Moreover, this function has do be defined inside a class which is derived from

Xabsl2FunctionProvider:
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class MySymbols : public Xabsl2FunctionProvider

{

public:

double doubleReturningFunction() { return 3.7; }

};

...

MySymbols mySymbols;

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",

&mySymbols, (double (Xabsl2FunctionProvider::*)())

&MySymbols::doubleReturningFunction);

The registration of all other symbol types works in a similar way.

All basic behaviors are derived from the classXabsl2BasicBehaviorand have to implement the pure

virtual functionexecute(). The name of the basic behavior has to be passed to the constructor of the base

class. Furthermore, the parameters of the basic behavior have to be declared as members of the class and

has to be registered usingregisterParameter(..). Afterwards, an instance has to be registered to the engine

with theregisterBasicBehavior(..)function for each basic behavior class.

3.5.3 Creating the Option Graph and Executing the Engine

After the registration of all symbols and basic behaviors, the intermediate code can be parsed using the

createOptionGraph(..)function.

If the engine detects an error during the execution of the option graph, the error handler is invoked. This

can happen if the intermediate code contains a symbol or a basic behavior that was not registered before. By

using theXabsl2ErrorHandlermember variableerrorsOccured, it can be checked whether the option graph

was created successfully or not.

If no errors occurred during the creation, the engine can be executed withexecute(). This function executes

the option graph once at a time. Starting from the selected root option, the state machine of each option is

carried out to determine the next active state. After that, the state machine for the subsequent option of this

state is carried out again and again until the subsequent behavior is a basic behavior, which is executed then,

too. Finally, the output symbols that were set during the execution of the option graph become applied to
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Figure 3.15:The Xabsl2 Profilerallows to analyze changes in the behaviors over time. Each line reports a

change in the state of theXABSLsystem. In the left column, a timestamp and the number of

frames with no change of state is displayed. The other columns show the corresponding option

and state activations on “levels” of the option graph (each option was automatically assigned

to such a level for better visualization). A red cell indicates that another option was activated

on a certain level, yellow stands for a state change, and green means that the parameters of a

subsequent behavior changed.

the software environment.

In theexecute()function the execution starts from the selected root option, which in the beginning is the

root option of the first agent. The agent can be switched using the functionsetSelectedAgent(..).

3.5.4 Debugging Interfaces

The engine provides rich debugging interfaces that can be used to develop monitoring and debugging tools.

Instead of executing the option graph withexecute(), single basic behaviors or options can be parameter-

ized and executed separately. There is a number of functions to trace the current state of the option graph,

the option activation path, the option parameters, and the selected basic behavior. For tracing the values of

symbols, the engine provides access to the symbols stored. Enumerated output symbols can also be set man-

ually for testing purposes. Note that this has to be done after the option graph was executed. The changes

are applied to the software environment by using the functionsetOutputSymbols().
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Figure 3.16:TheXabsl2 Behavior Tester, a part of theRobotControlapplication, makes use of the debugging

interfaces of theXabslEngine.
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Based on that interfaces, two debug tools were integrated into theRobotControl[61] application, the

general debug tool of theGermanTeam. First, theXabsl Behavior Tester(cf. fig. 3.16) allows to trace the

option activation path, the parameters and execution times of options, states, and basic behaviors, as well

as the values of input and output symbols. Into the other direction, single options or basic behaviors can be

selected and parameterized manually for execution.

Second, theXabsl Profiler(cf. fig. 3.15) can be used to analyze behaviors over time. For that, log files

containing the option activation path are recorded and visualized such that it can be seen for how long states

and options were active. This helps to detect state oscillations or unused states.

3.6 Discussion

The XABSLsystem is a tool that can be used for decision making in autonomous agents. Because the

language has no elements that are specific for a certain agent system and due to the independence of the run-

time systemXabslEnginefrom specific software platforms,XABSLcan be applied in very different agent

architectures and platforms.

That’s why it depends on the chosen agent architecture and the implemented behaviors whether anXABSL

agent behavior specification is reactive or deliberative. If the criterion for that distinction is that the envi-

ronment is represented and modeled in persistent states, integrating past information, then it depends on if

either the agent system directly passes the sensor readings to theXABSLbehaviors or a world model is built

up and made available. But as the state based approach tends to continue once selected behaviors, there are

persistent states of intention. If seen from that perspective,XABSLis clearly deliberatively.

In the taxonomy of Russel and Norvig [66],XABSLagents aregoal based agents, although there are no

explicit goals. But implicitly the implemented behaviors (options) have goals, which are decomposed into

sub-goals (subsequent options). Previous goals and intentions (option and state activations) are kept.

The architecture is hierarchical, as complex behaviors are composed from simpler ones. But it is not

layered, because although more long-term and deliberative behaviors reside in higher levels of the hierarchy

and more low-level and reactive behavior on lower levels, there is no conceptual differentiation between

different levels of the option graph.

XABSLdoes not contain a classical planning component in the meaning that plans are derived automat-

ically from the current world model or future simulations, but is possible to add such mechanisms to the

agent system and to make the results available to theXABSLbehaviors through input symbols.
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The XABSLarchitecture is behavior based [7] as high-level behaviors are constructed from a set of

reactive basic behaviors. Thereby is due to the use of finite state machines always only one basic behavior

selected at the same time. But nevertheless, it is possible to combine different behaviorscontinuously[6]

inside the basic behaviors, for instance by using potential fields.

The system is used inside of existing agent architectures for decision making.XABSLcan neither be

used to model a complete agent system nor is it able to control the complete agent program (instead, it is

frequently called from the agent program). This is in contrast to many other languages such as theBehavior

Language[14], COLBERT[37], or CDL/ MissionLab[48], which model complete agents including sensory

and motor control capabilities.

Additionally and also in contrast to these systems,XABSLdoes not translate the behavior specifications

into the code of the native programming languages (such as C++) but directly interprets an intermediate

code. Thus, it is not necessary to recompile the programs if the behaviors change, leading to a shorter

change-compile-test cycle.

The language can be best compared with theConfiguration Description Language(CDL), a part of the

MissionLabsystem. As CDL,XABSLallows to completely specify agent behavior based on hierarchies of

finite state machines. ButXABSLhas a higher expressiveness in conditions for state transitions so that CDL

documents could be transformed intoXABSLdocuments, but not vice versa.
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XABSLwas initially developed for theGermanTeam(cf. sect. 4.1), a group of several German researchers

competing in theRoboCup[36, 1, 8]Sony Four Legged League. As the first and main application,XABSL

was used by them to model the overall behavior of soccer playing Aibo robots. Section 4.2 describes the

implemented soccer behaviors of theGermanTeamin detail. Since 2004, it is also used to control the head

movements of the robots (section 4.3).

Section 4.4 introduces an exampleXABSLbehavior implementation for theASCII Soccerenvironment

[10]. This example was done to support behavior engineers when employingXABSLon their own agent

platform. Additionally, it shows that theXABSLlanguage, the tools and the executing engine are independent

from the developments made for the Sony Four Legged League.

4.1 RoboCup and the GermanTeam

The GermanTeam[2] competes in the Sony Four Legged League and is a cooperation of four German

RoboCup teams:Aibo Team Humboldt(Humboldt-Universiẗat zu Berlin),Bremen Byters(Universiẗat Bre-

men),Darmstadt Dribbling Dackels(Technische Universität Darmstadt), andMicrosoft Hellhounds(Uni-

versiẗat Dortmund). TheGermanTeamis a national team. The members participated as separate teams in the

national German Open competitions in Paderborn 2001, 2002, 2003, and 2004 but formed a single team at

the international RoboCup world championships in Seattle 2001, Fukuoka 2002, Padova 2003, and Lisbon

2004. The author is member of theAibo Team Humboldtfrom the Humboldt-Universiẗat zu Berlin.

4.1.1 The Sony Four Legged League

The Sony Four Legged League is one of the official leagues in RoboCup. The robot platform in this league is

standardized. The Sony Aibo [25] ERS-210, ERS-210A (cf. fig. 4.1a), and ERS7 (cf. fig. 4.1b) are the only

permitted systems in 2004, and can only be used without hardware modification. The main sensor of the

Sony Aibo is the camera located in its head. The camera serves 25 color images per second with a resolution
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a) b)

Figure 4.1:a) The Sony Aibo ERS210A, with red tricot. b) The Sony Aibo ERS7, without team markers.

of 176×144 pixels (ERS7: 30 fps, 208×160 pixels). The robots are equipped with a single 200 MHz MIPS

processor (ERS-210A: 400 MHz, ERS7: 576 MHz) and 32 MB of RAM (ERS7: 64 MB). Moreover, the

robot has touch sensors in the back and the head, three acceleration sensors, two microphones in the ears,

and an infrared distance sensor in the head (ERS7: additional infrared sensor in the chest). A WLAN card

allows to communicate with team mates or a PC for debugging purposes.

The head has three degrees of freedom and each of the four legs has three joints. The tail, the mouth and

the ears can also be moved. LEDs in the head and the tail (ERS7: on the back) and a speaker in the mouth

allow additional visual and acoustic output.

The soccer field in the Sony Four Legged League approximately has a size of 5m×3m (cf. fig. 4.2). As

the main sensor of the robot is a camera, all objects on the RoboCup field are color coded. There are four

two-colored flags for localization in the corners (pink and either yellow or sky-blue), the two goals are of

different color (yellow and sky-blue), the ball is orange (as in all RoboCup leagues), and the robots of the

two teams wear tricots in different colors (red and blue).

A soccer game lasts 2x10 minutes. The robots act completely autonomous, i.e. there is no external com-

puter beside the field that can help the players in their calculations. The only exception is the so-calledgame

manageroperated by the referee which allows to remotely start and stop a game.
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Figure 4.2:The soccer field in the Sony Four Legged League. On the left a team of four Sony Aibo ERS210

robots, on the right four Sony Aibo ERS7 robots.

4.1.2 Characteristics of the Sony Four Legged League

The Sony Four Legged League (as well as the Humanoid League) differs from the “wheel based leagues” in

the complexity of physical actions that have to be employed both for interaction and perception. Instead of

kicking with a single kicking device such as in the middle or small sized league, this allows for a lot of differ-

ent kicking skills using legs, body, or even head, which sometimes require preparatory movements. Instead

of moving on wheels many different styles of omni-directional walking are used in different situations.

As the camera of the robot has only a very narrow opening angle, the problem of directed vision (in

contrast to omni-vision as often used in the middle-sized league or in the first approaches of the small-sized

league to local vision systems) has to be tackled. And as information is collected and modeled over time,

the movement of legs and head has to be coordinated with current vision needs.

Although the quality and reliability of the perception and world modeling capabilities of theGerman-

Team’s robots constantly increases [34, 33, 32, 29, 28, 19, 62, 63, 64], the resulting world model is still

very uncertain and incomplete, which is one of the most challenging problems for behavior control in the

Sony Four Legged League. The results of the performed actions are also very unpredictable. A kicked ball,

for example, rarely rolls into the desired direction. Until now, the robots are only poorly able to recognize

whether they are stuck to other robots.

With the introduction of Wireless LAN communication in the Sony League in 2002, cooperative strategies

became more complex and consequently require adequately formulated high level behaviors. The problem

to be faced here is the low bandwidth and the sometimes relatively long transmission times for messages,

which makes team coordination a difficult task.
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Figure 4.3:Information processing in the robots of the GermanTeam. Boxes denote modules, ellipses denote

the representations that are needed to exchange information between the modules. The bold boxes

mark the both modules which are based onXABSL: “BehaviorControl” and“HeadControl” .

4.1.3 The Software Architecture of the GermanTeam and XABSL

TheGermanTeamdivided the information processing of the robots into a set of well-defined tasks such as

image processing, ball modeling, or LED control [61]. Each of these tasks is performed by amodule, a “sub

program” with well-defined interfaces that allow to develop multiple switchablesolutionsfor a task. The

modules exchange information only via external representations – the interface of a module defines, which

representations are the input of the module and which representations have to be written as output. The

modules can be distributed freely over different concurrent processes.

A simplified graph of theGermanTeam’smodules is shown in figure 4.3. On the first level, the perception

modules process the raw sensor data and generate percepts, e.g. the“BallPercept” or the“LandmarksPer-

cept”. The modules on the second level try to integrate these percepts over the time into a stable world

model. The third level uses the items of this world model such as“BallPosition” or “RobotPose” to select

appropriate actions and to generate commands for the actuator control modules on the fourth level.
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In the current process layout of theGermanTeam, the modules from the first three levels are executed

together in the process“Cognition” , which is triggered every 33 ms by a new image from the robot’s

camera. Concurrent to that, the modules of the fourth level are executed together every 8 ms in the process

“Motion” . The both modules which useXABSLare “BehaviorControl” on the third and“HeadControl”

on the fourth level.

The “BehaviorControl” module has no access to the data gained at the perception level but makes its

decisions based on the information provided by the world modeling modules. The main items of this world

model are the robot’s pose, the ball’s position and speed modeled from own observations, the ball position

communicated by team mates, the positions of the team mates, an vision based obstacle model which con-

tains 90 sectors with distances to the next obstacles, a robot state that contains information about the switches

of the robot and whether the robot has fallen down, the game control data received from theRoboCup Game

Managerapplication, and behavior messages from team mates. Additionally, the motion control modules

provide information about the currently executed motions, as there is a delay between the request of a motion

and the start of a motion.

The primary task of the module“BehaviorControl” is to control the leg movements of the robot by

generating a motion request that is executed by the motor control modules. This is either a request to walk

with a specific walk type, translation speed, and rotation speed or a request for a special action such as a

kick, getup, or stand. Although the motion system is responsible for the control of the head movements, the

behavior control programs have to set a head control mode that specifies preferences where to direct the

head to. A LED request specifies how to control the LEDs of the robot and a sound request allows to play

wave files for debugging purposes. Finally, the behaviors can send messages to the team mates.

The secondXABSL-powered module,“HeadControl” has to control the three joints of the head by writing

a head motion request. It carries out the head control mode which was set by the behavior control. To be

able to direct the camera to the ball and other interesting objects on the field, it has access to the robot’s

pose, the ball’s position and speed, a body posture determining the tilt and the height of the robot’s body,

and information about the currently executed leg motions.
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4.1.4 History of Development

TheXABSLsystem evolved together with the programs of theGermanTeamover three years. A C++ imple-

mented layered state machine architecture was developed for the RoboCup competitions in 2001 in Seattle

[15]. Based on that, a first version ofXABSLwas developed for the participation of theAibo Team Humboldt

[3] at the German Open 2002 in Paderborn. Later, this approach was chosen for the participation of the

GermanTeamin the RoboCup competitions 2002 in Fukuoka (Japan) [20]. In 2003, the language, the tools

and the behaviors themselves were largely improved and used by allGermanTeammembers for the German

Open 2003. The resulting four different solutions could be easily merged into a common behavior solution

for the participation of theGermanTeamin the RoboCup world championship 2003 in Padova (Italy) [62].

In 2004, again all members of theGermanTeamused the system for their participation in the German Open

2004. As almost no changes were made toXABSLitself, the main focus of development was in the behavior

implementations itself, resulting in the win of the RoboCup world championship 2004 in Lisbon.

4.1.5 Developing Agent Behaviors in a Team

More than 20 team members of theGermanTeamwere involved in the developing and tuning of the behav-

iors of theGermanTeam. The modular approach ofXABSLsupports the development of behaviors in a team.

Many developers can easily extend or advance the behaviors in parallel. The distribution of anXABSLagent

behavior specification over many files simplifies the use of a version control system such as CVS.

New options can easily be added to existing ones without having negative side effects. The debugging

interfaces of theXabslEngineallow it to test options separately before they are used by more high-level

options. Better solutions of existing options can be developed in parallel and are easy to compare with the

previous ones. A constantly increasing library of well tuned low level behaviors can be reused in different

contexts for the creation of new options.

All four member universities of theGermanTeamused a separateXABSLsystem for their participation

in the German Open 2003 and 2004. Nevertheless, due to the modular constitution ofXABSLbehavior

specifications, it was an easy task to merge afterwards the best behaviors (options) of the four universities

into a common solution for the participation in the RoboCup world championships 2003 and 2004.
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4.2 Playing Soccer with XABSL

The behaviors which theGermanTeamdeveloped inXABSLfor the RoboCup championships 2004 in Lisbon

are distributed among about 60 options. Figure 4.4 shows the option graph of the soccer related behaviors.

In general, the lower behaviors in the option hierarchy such as ball handling or navigation, have to react

instantly on changes in the environment and are therefore very short-term and reactive. The more high-level

behaviors such as waiting for a pass, positioning, or role changes try to prevent frequent state changes to

avoid oscillations and make more deliberative and long-term decisions. This section describes from bottom

to top how theGermanTeam’s robots play soccer starting with basic capabilities and finishing with the

high-level team strategies.

An extensive automatically generated HTML documentation of these behaviors can be found at

http://www.ki.informatik.hu-berlin.de/XABSL/examples/gt2004/. It is recommended to use this site as an

additional source to this Section.

4.2.1 Ball Handling

The GermanTeamwon the 2004 RoboCup world championships due to – besides other things – its so-

phisticated well tuned ball handling behaviors. They are composed from 18 options and 7 basic behaviors,

which looks much. But this section will show how step by step the whole behavior is composed from simple

options in a clear and straight forward way.

4.2.1.1 Approaching

All behaviors for ball approaching and dribbling are based on one single basic behavior:“go-to-ball” is

responsible for walking to the ball. For the use in different contexts, it provides a variety of parameters.

First, the body of the robot is always directed to the ball, restricted by the parameter“max-turn-speed”. The

maximum speed is given by the parameter“max-speed”, making higher options responsible for slowing

down near the ball. The“max-speed.y”parameter restricts the sideward component, allowing for sprinting

with the “dash” walk type. For dribbling and the “turn kick” (cf. 4.2.1.2),“y-offset” specifies a y offset

with that the robot shall arrive at the ball. If the robot is very close to the ball and if the ball is very to the

left or right, the translation component is almost completely inhibited, making the robot only turn in order

to avoid pushing the ball away with the front legs.
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Figure 4.4:The option graph of the soccer-related behaviors of theGermanTeam.
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Figure 4.5:
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Figure 4.6:Option “approach-ball” controls the head movements while approaching the ball and han-

dles collisions and ball losses. The complete documentation of the option can be found at

http://www.ki.informatik.hu-berlin.de/XABSL/examples/gt2004/option.approach-ball.html.

The ball handling behaviors do not reference the“go-to-ball” basic behavior directly but use the option

“approach-ball” (cf. fig. 4.6). This option makes a distinction whether the robot is far away from the ball

or close. In the first case, in state“search-auto”, the head-control mode“search-auto” is set. This lets the

head of the robot look at the ball and – frequently, always after a certain time of consecutively perceived

balls – shortly look around for landmarks and obstacles to improve self-localization. These head scans are

disadvantageous near the ball. That’s why if the robot gets closer to the ball than specified in the option

parameter“look-at-ball-distance”, in state“search-for-ball” the head control mode is set to“search-for-

ball” . This lets the head only look at the ball. To avoid frequent changes between these two states, there is a

distance hysteresis of 5 cm between them. In both states, the option“approach-ball-set-walk-speed”, which

controls the walk speed (see below), is referenced.
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a) b)

Figure 4.7:a) Option “approach-ball-set-walk-speed”controls the speed of ball approaching. b) Option

“turn-for-ball” tries to redetect a previously lost ball.

If the robot is far away from the ball (in state“search-auto”) and there is a collision with another robot

(detected as described in [28]), in the states“draw-back-left” and“draw-back-right” the robot walks side-

ways for a short time to uncouple from the other robot. There is no transition from“search-for-ball” to the

draw back states in order to give opponent robots no advantage near the ball.

If the ball was not seen for 1.3 seconds in the“search-auto” state or not for 400 ms in the“search-

for-ball” state, in state“ball-not-seen” the option“turn-for-ball” (see below) tries to redetect the ball.

If the ball is seen again, the state“ball-just-found” remains active for 2 seconds, setting the head con-

trol mode“search-for-ball” in order to avoid further ball losses due to scanning around with“search-auto”.

Option “approach-ball-set-walk-speed”(cf. fig. 4.7a) controls the speed of ball approaching. It is

only used by option“approach-ball” . In state“fast” , the basic behavior“go-to-ball” is executed with

a fixed speed of 350 cm per second. If the robot gets closer to the ball than specified in parameter

“slow-down-distance”(minus 2,5 cm hysteresis), in state“slow” the speed given in“slow-speed”is passed

to “go-to-ball” . From the“fast” state, if the ball is farer away than 1200 cm and if the angle to the ball is

51



4 Applications

between plus and minus 7 degrees, state“dash” becomes active. There“go-to-ball” is executed with walk

type“dash” , a faster but not omnidirectional walking gait.

The ball approaching stops immediately after the ball was not seen anymore for a certain time (see above).

In this case,“approach-ball” references the option“turn-for-ball” (cf. fig. 4.7b) to redetect the ball. In the

initial state“ball-not-seen”, the basic behavior“stand” is executed. Note that“stand” does not stop walking

immediately but continuously slows down in order to avoid bumpy movements if the ball is redetected fast.

As “turn-for-ball” can be activated from different contexts and situations, the time how long state“ball-

not-seen”remains active depends on how long the ball was not seen and where it was seen last. The state

remains active for at least 800 ms which are needed for“stand” to almost slow down. As long as the ball was

seen 1.7 seconds before,“ball-not-seen” keeps active to give the head control a chance to make a complete

scan around. If the ball was seen in the last 5 seconds and in the near, it is very likely that the ball is at the

side of the robot. Therefore, in state“back-up” the robot walks backward for 1.5 seconds to redetect the

ball. If that fails (or from“ball-not-seen” if all other conditions fail), the state“ball-not-seen-left”or “ball-

not-seen-right”gets active, depending on whether the ball was previously seen left or right. The robot turns

around using the“walk” basic behavior. The head control mode is set to“look-left” or “look-right” , letting

the robot look into the direction of turning. Although the“turn-for-ball” option is not activated anymore

from “approach-ball” when the ball is redetected, state“ball-seen” becomes active when the ball is seen

again, turning the robot to the ball.

4.2.1.2 Dribbling

The option“approach-and-turn” (cf. fig. 4.8) dribbles the ball into the direction that is passed through

the parameter“angle” . Already this behavior is able to get the ball reliably into the opponent goal. It is

composed from mainly“approach-ball” and a few other short walk sequences that push the ball into the

desired direction. It does not use any kicks which makes it a fast and robust behavior.

State“approach-ball” activates option“approach-ball” with proper parameters for fast ball approaching.

When it happens that the ball is very close and that the robot is already directed into the direction where

the ball shall be dribbled to, state“go-to-ball-without-turning” is activated and basic behavior“go-to-ball-

without-turning” is selected. Different from“go-to-ball” , this basic behavior uses only x and y translation.

The advantage is that it is a bit faster near the ball than the normal ball approaching. As soon as the conditions

above are not met anymore (with a hysteresis), the option returns to the state“approach-ball” .
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Figure 4.8:Option “approach-and-turn” dribbles the ball into given direction by pushing the ball with the

chest or pulling it around with the front legs.

If the ball is seen well and directly in front of the robot, one of the three dribbling moves starts: state

“turn-right” becomes activated if the destination is more to the right than 30 degrees,“turn-left” gets active

if the destination is more to the left than -30 degrees, and otherwise state“go-on” is chosen. In“go-on” ,

the robot just runs blindly straight ahead for 250 ms, pushing the ball forward with the front legs or chest. If

after the time the ball is seen again or still seen, it is returned to state“approach-ball” . Otherwise, in state

“find-ball-again” , the robot does not stop – as it would happen when in the“approach-ball” option the ball

is not seen anymore – but still walks forward with a slow speed for maximum 500 ms, assuming that the

ball is still in front of the robot and not at the side or behind.

In the states“turn-left” and“turn-right” , the robot simultaneously walks forward and turns at the same

time for 500 ms, pushing the ball reliably and strong into a direction of approximately 60 degrees. A different

walk type,“turn-kick” is used in order to have the front legs more stretched to the front for safer guiding

the ball with the outer leg. If the ball is not seen after the 500 ms, in the states“find-ball-again-left” and

“find-ball-again-right” the robot does not stop but also walks straight ahead at a slow speed. Additionally,
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Figure 4.9:Option“grab-ball-with-head” grabs the ball with the head.

the head control mode“search-for-ball-left” or “search-for-ball-right” is set, which gives the head control

a hint in which direction the ball was pushed and where to search first.

4.2.1.3 Grabbing and Pushing Backward

The dribbling with“approach-and-turn” is only reasonable when the robot is behind the ball (seen from

the direction where the ball shall be played to). For all other cases, option“turn-and-release”grabs the ball

with the head (the ball is shut between the front legs and the head), turns with the grabbed ball, and then

releases the ball again.

The behavior for ball grabbing is encapsulated in a separate option,“grab-ball-with-head(cf. fig. 4.9). In

the initial state“approach-ball” , option“approach-ball” is selected with a quite low speed near the ball. If

the ball is in the correct position for grabbing, in state“grab” the robots walks forward at a low speed “onto

the ball”. The head control mode is set to“catch-ball” and the actual job of grabbing is done by the head

control. The infrared distance sensor in the chest is used to measure the exact distance to the ball. If the ball

is not at the chest yet, the head is lifted in order to push the ball not away with the head. Otherwise, the

head is bended over the ball. The state“grab” is active without feedback for 1 second. After that, in state
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Figure 4.10:Option “turn-and-release”grabs the ball and pulls it around. The actual job of lifting the head

in the right moment is done in the head control.

“continue-grab” it is checked with the infrared distance sensor whether the grab was successful (it has to

be checked both in the head control and in the behavior control as a transmission of this information from

theMotion to theCognitionprocess would last too long). If not, it starts from the beginning in the“grab”

state. If the ball was grabbed, the option stays in the state“grabbed” , which is a target state to signal higher

options that the whole behavior was successful.

In the initial state“grab” of option“turn-and-release”(cf. fig. 4.10), the option“grab-ball-with-head”

is executed until it reaches its target state. After that, in the states“turn-left” and“turn-right” , the robot

turns with the ball to the desired direction given by the option parameter“angle” . The head control mode

is set to“catch-ball” in order to keep the ball grabbed. The special walk type“turn-with-ball” is set.

With that, the robot uses almost only the hind legs for turning, the front legs enclosing the ball. After the

difference to the target angle gets less than 110 degrees, in the states“release-ball-left” and“release-ball-

right” the ball is released again. The head control mode is set to“release-caught-ball-when-turning-right”

and“release-caught-ball-when-turning-left”. While the robot just continues to turn with walk type“turn-

with-ball” , again the actual job is done by the head control. To give the ball a strong push with the outer leg,

the head is lifted only if the current position in the walk cycle is between 0.77 and 0.85 when turning right
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or between 0.27 and 0.35 when turning left. If state and option“approach-ball” would be activated direct

after that, the ball would be assumed to be lost as it indeed was not seen during turning. Therefore, in state

“find-ball-again” , the robot has a chance to redetect the ball while slowly walking forward for maximum

500 ms.

4.2.1.4 Kicking

Kicking fast and precisely is crucial when playing robot soccer. Thus, theGermanTeamdeveloped about

50 different kicks, suitable for almost all situations that can happen during a match. This large amount

of specialized kicks requires a proper evaluation method to select which kick should be used in a certain

situation.

Thereto, theGermanTeamfollowed three main goals for kicking: First, the robots should be able to

play without any kicks. This goal was achieved first by implementing options like the above discussed

“approach-and-turn” and “turn-and-release”. Second, there should be no actions that try to establish a

special situation in that a kick can be applied (like strafing or exact positioning at the ball). Instead, the

robots should play the ball as if they were not using any kicks and kicks should be performed only if there

was by chance an appropriate situation. And third, the kick selection itself should be more flexible, easy to

extend, and, above all, not inXABSL, as it is indeed possible but very hard and time consuming to model

and fine-tune the prerequisites of a kick inXABSL.

The goals two and three were achieved by introducingkick selection tables. A kick is retrieved from such

a table by putting in the desired kick direction and the current x and y position of the ball. The look-up table

stores for 12 discrete sectors (30 degrees each) of desired kick directions the start positions of appropriate

kicks in a 1 cm wide grid, as shown in figure 4.11a) and c). To gain the table, a semi-autonomous teach-in

mechanism was developed. Thereto, a robot stands on the playing field and kicks the ball several times with

the same kick. Meanwhile, the starting position and the final position of the ball are measured relative to the

robot. The results of such kick experiments can be seen in figure 4.11b) and d). For editing the kick selection

table based on that data, a kick editor was developed.

As different situations on the field require different kicks, there are multiple kick selection tables. There

are ones for the goalie, a field player playing in the center of the field, near the own goal, at the right border,

at the left border, at the left opponent border, at the right opponent border, near the own goal, and near the

opponent goal (cf. sect. 4.2.1.5).

To make the data stored in the kick selection table accessible to theXABSLbehaviors,XABSLconstants
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a) b)

c) d)

Figure 4.11:a) The kick selection table for the goalie when the desired kick direction is “forward” (in the

sector between -15 and 15 degrees). If the current position of the ball is in the outer blue areas,

the “left-paw” or “right-paw” kick is selected, in front of the robot (red area), kick“chest-

strong”, and in a narrow range more distant in front of the robot (brown area)“forward-kick-

hard” . b) Data recorded from kick experiments for the“left-paw” kick. The dots mark the

position where the ball was perceived before the kick started. The lines out of the dots indicate

in which direction and how far the ball was kicked in the experiment. All kick experiments in

that the ball was kicked into the “forward” sector are highlighted blue. The area for“put-left” in

a) was defined by taking these highlighted entries into account. c) The goalie kick selection table

for the sector between 45 and 73.5 degrees. For the ball to the very left (purple area),“put-left”

is selected, close to the robot (red area)“hook-left” , and in the brown area“head-left” . d) Kick

experiments for the“head-left” kick, with those entries highlighted where the ball was kicked

into the direction between 45 and 75 degrees. 57
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a) b)

Figure 4.12:Both a) option“approach-and-turn-and-kick”and b) option“turn-and-release-and-kick”exe-

cute a behavior that is able to play the ball without kicking and only perform a kick if by chance

it is applicable.

for the table and kick ids are generated automatically from the C++ implemented kick selection table. The

decimal input function“retrieve-kick” is used to retrieve a kick, taking the desired kick direction and the id

of the table to be used as parameters. If the returned kick is different from“action.nothing”, an appropriate

kick was found for the current situation and the kick can be executed by using the option“execute-kick”.

Option “approach-and-turn-and-kick”(cf. fig. 4.12a) is an example for a behavior that uses kicks. It is

composed from a behavior that is able to play the ball without kicking (“approach-and-turn”) and the kick

execution option“execute-kick”. In the initial state“approach-and-turn”, the kick selection table is always

queried whether a kick is possible. If so, the kick is executed in the statekick. After it finished (the option

“execute-kick” reached its target state), option“approach-and-turn-and-kick”remains for 2.5 seconds in

the state“approach-and-turn-after-kick”, which executes the same behavior as state“approach-and-turn”

but makes sure that there elapse at least 2.5 seconds between two successive kicks.

Similarly, the option“turn-and-release-and-kick”(cf. fig. 4.12b) is composed of“turn-and-release”and

“execute-kick”. In the option“turn-around-ball-and-kick”, the basic behavior“turn-around-ball” turns the

robot behind the ball, which is needed at the borders of the field (“turn-and-release”does not work there).

Option “approach-and-kick-and-go-on”uses only“approach-ball” but has an additional state“go-on” ,
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Figure 4.13:Option“handle-ball” selects between different behaviors for different zones on the field.

similar to in“approach-and-turn”.

4.2.1.5 Zones for Ball Handling

Some zones of the field require different behaviors than when playing in the center of the field. For instance,

if the ball is at one of the borders, it is often not possible to grab the ball with the head. Instead, if the robot

is in front of the ball, it has to turn behind the ball before it can be dribbled or kicked. Near the own goal,

the direction where to play the ball is not that important as to clear the ball just somewhere. And, at the

opponent goal, there is much more precision needed than in the rest of the field.

Option “handle-ball’ (cf. fig. 4.13) selects between these behaviors depending on where the ball is on

the field. The initial state“ball-in-center-of-field” covers most of the area of the field, executing option

“handle-ball-in-center-of-field”. At the borders and near the goals there are separate states, executing the

corresponding ball handling options. To avoid oscillations between these states, there was added a broad

distance hysteresis. For instance, there is a transition from“ball-in-center-of-field” to “ball-at-left-border”

when the y position of the ball is greater than 1250 mm. If then the y position of the ball gets less than 1100
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mm, there is a back transition to“ball-in-center-of-field”.

In the center of the field, option“handle-ball-in-center-of-field”selects only between“turn-and-release-

and-kick” and“approach-and-turn-and-kick”, depending on whether the robot is behind the ball or not. As

the desired direction of play the“best-angle-to-opponent-goal”is passed. This angle is mostly the direct

angle to the opponent goal. If there are obstacles on the way there, the angle is bended to the bigger gap in

the obstacles. If there are everywhere obstacles in the direction of the goal, the angle to the next team mate

is chosen, which sometimes results in a pass.

Near the own goal, option“handle-ball-in-center-of-field”uses the same options as in the center of the

field, but passes a different angle: the“best-angle-away-from-own-goal”is not directed to the opponent

goal but away from the own goal.

At the opponent goal, option“handle-ball-at-opponent-goal”combines“approach-and-turn-and-kick”

with “turn-around-and-ball-and-kick”, using the angle“angle-to-point-behind-opponent-goal”. The turn-

ing behind the ball is indeed slower than when doing a kick to the side, but it is safer when opponent players

such as the goalie are involved.

At the left and right border, option“handle-ball-at-left-and-right-border”chooses between“approach-

and-turn-and-kick-and-go-on”if the robot is completely behind the ball,“approach-and-turn-and-kick”if

the robot is almost behind the ball, and“turn-around-ball-and-kick” if not. The average distance to the ball

over two seconds is used to decide whether the robot got stuck to other robots. If so, the kick selection table

“when-stuck”containing quite imprecise but strong kicks is used. If not, less kicks are performed.

Option “handle-ball-at-opponent-border”has a very similar structure but uses less aggressive kicks to

dribble the ball securely along the border into the opponent goal.

4.2.1.6 Transitions Between Ball Handling Behaviors

In the more high-level options, it is important to take into account when to do transitions between different

behaviors. In general, all ball handling behaviors should be such that it is no problem to switch between

them (which does not allow for strafing behaviors or behaviors for exact positioning for a certain kick). But

there are some phases in behaviors such as ball grabbing, dribbling, or kicking, in that the behaviors should

not be interrupted.

In XABSL, options have no chance to determine whether an option deep below in the option graph is in

such a critical state. Therefore, the information whether the ball is handled at the moment is transmitted

through an external variable, which can be queried through the Boolean input symbol“ball.is-handled-at-
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the-moment”. In the dribbling and kicking options, all states that execute a behavior that should not be

interrupted set this variable by setting the enumerated output symbol“ball.handling” to “handling-the-

ball” . In options higher in the option hierarchy, there are only transitions between states if“ball.is-handled-

at-the-moment”is false.

Another principle for gaining smooth ball handling performance is that the higher the behavior in the

option hierarchy, the less frequent should be transitions between states. A once selected behavior should be

always continued unless there is a strong reason to change it.

Furthermore, if it happens that the ball is not seen anymore, the previously executed behavior should

be continued until the ball is redetected (all ball handling options are based on“approach-ball” , which

autonomously tries to redetect the ball using the“turn-for-ball” option). Therefore, there are only transitions

in the higher options when the ball is just seen.

4.2.2 Navigation and Obstacle Avoidance

Navigation includes fast walking to a position with and without obstacle avoidance as well as positioning

of the supporters (the players that do not handle the ball but try to reach a good position for support, pass

interception, or defense).

4.2.2.1 Walking to a Position

There are two basic behaviors for walking to a position. First,“go-to-point” has the parameters“x” and“y”

for the destination point,“destination-angle” for the orientation of the robot at the end, and“max-speed”

for the maximum walk speed. As the rotation which is needed to reach the target angle is distributed over

the whole distance to the target, it may happen that the robot walks backward.

Second, basic behavior“go-to-point-and-avoid-obstacles”uses the vision based obstacle model [29] to

avoid obstacles on the way to the destination. Therefore, the robot has to walk forward to be able to detect

the obstacles. The parameter“avoidance-level”defines how strict collisions shall be avoided. As it walks

forward to its destination, it has no parameter for a target angle.

The option“get-to-position-and-avoid-obstacles”(cf. fig. 4.14a) combines these two basic behaviors.

Far away from the destination, in state“far-from-destination”, “go-to-point-and-avoid-obstacles”is used.

As this basic behavior has problems near the target and as a target angle has to be reached, in state“near-

destination” “go-to-point” is used. The distance from which on no obstacles shall be avoided can be set

with the parameter“no-obstacle-avoidance-distance”. At the destination in state“at-destination”, the robot

61



4 Applications

a) b)

Figure 4.14:a) Option“get-to-position-and-avoid-obstacles”walks to a position avoiding obstacles on the

way there. b) On top of that,“get-to-ball-and-avoid-obstacles”walks to the ball.

stops using the basic behavior“stand” .

4.2.2.2 Walking to a Far Away Ball

The ball handling behaviors do not perform any obstacle avoidance and are therefore only executed near the

ball. For longer distances, option“get-to-ball-and-avoid-obstacles”(cf. fig. 4.14b) is used.

For the ball position, there is a distinction between “seen” and “known”. A “seen” ball position is a

position that was modeled from perceptions made by the own camera of the robot. A “known” ball position

is derived from a ball that was either seen or, after a time of 5 seconds in that no ball was seen, from a ball

position that was transmitted over the Wireless LAN by team mates (the “communicated” ball position). As

the “seen” ball position is measured and modeled relative to the robot, it is independent from localization

errors. Instead the “communicated” ball position contains both the localization errors of the sending and the

receiving robot and is therefore much more imprecise. That’s why the “known” ball position can only be

used to walk approximately into the direction of the ball but not for exact positioning near the ball or even

ball handling.
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If the ball is seen and far away, in state“far-from-seen-ball” the option“get-to-position-and-avoid-

obstacles”is executed at high speed. If the ball is not seen but known and far, the same option is used in

“far-from-known-ball” at a medium speed. Near the seen ball, in state“near-seen-ball”, option“approach-

ball” is chosen. If the ball is not seen but known in the near, option“turn-for-ball” searches the ball, as

from the short distance the robot would see the ball if the communicated ball position was correct.

4.2.2.3 Positioning

TheGermanTeamemployed artificial potential fields for the positioning of the supporters on the field [41].

The basic behavior“potential-field-support” has the parameters“x” and“y” for the destination point as

well as“max-speed” for the maximum speed. Inside, a potential field of superposed force fields with re-

pelling forces from obstacles, the own penalty area, and the ball, tries to navigate the robot to the requested

point without collision and without obstruction of the ball handling robot. At the same time the body of the

robot is always oriented towards the ball.

Amongst others, the option“position-supporter-near-ball”(cf. fig. 4.15) makes use of that basic behavior.

It tries to support a ball handling robot by staying near the ball to be available if the other robot loses the

ball for some reason. Additionally, opponent robots are pushed away or obstructed in approaching the ball.

The parameters“x” specifies the desired relative x offset in field coordinates and“y” the distance in the

y direction to the ball. The actual side (in y direction) is chosen in the initial state“choose-side”. If the ball

is at the left border (y> 80 cm), the robot positions right to the ball, vice versa at the right border. In the

center of the field the robot chooses the side on that it is already.

As there is very often a crowd of robots around the ball, especially in games against weaker teams, the

ball is often not seen, leading to an imprecise ball model. Therefore, the supporting robots try to keep

calm and move cautious in order to stay well localized. For that, in the states“position-left-ball-seen”and

“position-right-ball-seen”the maximum speed of movement is set to 350 mm/s second minus 20 mm/s for

every second that the ball was not seen. If the ball is not seen but known (see above in sect. 4.2.2.2), in

the states“position-left-ball-known”and“position-right-ball-known”, the robots walk only half that fast as

the communicated ball position is very erroneous near the ball. For the case that the ball is neither seen or

known, there are two states for option“turn-for-ball” in order to continue on the previous side if the ball is

found again.
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Figure 4.15:Option“position-supporter-near-ball”positions the robot near the ball. The speed is controlled

depending on the reliability of the ball position.

4.2.3 Player Roles

The four robots on the field have different roles. The player with the number one is always the goalkeeper,

the other three players change their roles dynamically. There is always only one robot at the same time that

approaches the ball, the “striker”. The “offensive supporter” positions in front of the ball or in the opponent

half and the “defensive supporter” backs up from behind the ball and stays in the own half of the field.

4.2.3.1 Striker

The complete soccer playing behavior of the striker is implemented in option“playing-striker” (cf. fig.

4.16). In state“get-to-ball” , the option“get-to-ball-and-avoid-obstacles”(cf. sect. 4.2.2.2) is executed to
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Figure 4.16:Option“playing-striker” implements a complete striker.
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a) b)

Figure 4.17:a) Option“playing-offensive-supporter”and b)“playing-defensive-supporter”decide where to

position the robot.

approach the ball while avoiding obstacles on the way there. If the ball gets closer than 90 cm, in state

“handle-ball” option “handle-ball” (cf. sect. 4.2.1.5) approaches and handles the ball without avoiding

obstacles, as this would be disadvantageous. The back transition from“handle-ball” to “get-to-ball” is if

the ball is farer away than 120 cm.

When the ball is inside the own penalty area (where the field players are not allowed to be in), in state

“ball-in-own-penalty-area” the option“position-striker-when-ball-is-inside-own-penalty-area”positions

the striker at the side of the penalty area, waiting for the goalie to clear the ball out of it.

Sometimes it happens that none of the four players of the own team is able to detect the ball for 12 seconds

(for instance when two robots of the opponent team obstruct each other with the ball between them). Then,

in state“ball-not-known-for-long” option “search-for-ball” walks along a fixed path between the left and

right border of the field in order to redetect the ball. As also the supporters do that in other areas of the field,

the whole field is covered and the ball is found again soon.

4.2.3.2 Supporters

The main tasks of the supporters is to position themselves well for pass interception, defense, and support of

the striker. They cover the whole field in order to be able first at the ball if the ball is kicked out of a crowd.
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At last, they try to stay away from the ball in order to not obstruct the striker.

The “offensive-supporter” stays most of the time in front of the ball and is implemented in option

“playing-offensive-supporter”(cf. fig. 4.17a). If the ball is in the own half, in state“ball-in-own-half”

the robot positions short behind the center line at the y position of the ball using optionposition-supporter-

on-line, waiting for the pass. If the ball is inside the opponent half, in state“position-supporter-near-ball”

the offensive supporter assists the striker by staying near the ball using option“position-near-ball” (cf.

sect. 4.2.2.3). If the robot is still far away from the ball, in state“get-to-far-ball” the robot first walks

there using option“get-to-ball-and-avoid-obstacles”(cf. sect. 4.2.2.2). If the striker plays the ball at the

opponent border (which is detected through the position that the striker transmits over the WLAN), in state

“position-near-opponent-goal”the supporter positions at the opposite corner of the penalty area using op-

tion “position-offensive-supporter-near-opponent-goal”, waiting for a pass or a failed kick of the striker.

Similar to that, the defensive supporter implemented in option“playing-defensive-supporter”(cf. fig.

4.17b) mostly stays behind the ball. When the ball is in the opponent half, in state“ball-in-opponent-half”

positions in the middle of the own half at the y position of the ball using option“position-supporter-on-

line” . If the ball is inside the own penalty area, the robot positions at the side of the penalty area opposite to

the striker (state“position-near-own-goal”and option“position-supporter-near-own-goal”). Otherwise, it

positions behind the striker to be there if the striker gets into difficulties.

Option “playing-supporter-switch-roles”selects between these two supporter options, depending on the

role determined by the role negotiation process. It is executed from the initial state“normal-playing” of

option “playing-supporter” (cf. fig 4.18) for the positioning of the supporters. In state“ball-not-known-

for-long” option “search-for-ball” is executed if the ball is not known for more than 12 seconds. If a ball

is going to roll fast closely along the robot towards the own goal, it is stopped in states“block-left” and

“block-right” by jumping to the side. The actual analysis whether this could be successful is done in the

ball locator module, storing the information in the ball model and providing it to theXABSLbehaviors by

the Boolean input symbols“ball-rolls-by-left” and“ball-rolls-by-right” .

In order to not loose the ball out of view when the striker kicks the ball somewhere, the striker notifies the

other players on each kick through the Wireless LAN. Therefore, in all states of the ball handling options

that prepare or perform a kick, the enumerated output symbol“team-message”is set to“performing-a-

kick” . When the boolean input symbol“another-teammate-is-performing-a-kick”becomes true, in state

“intercept-before-kick” the supporters stop positioning but look only at the ball using head control mode
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Figure 4.18:Option “playing-supporter” intercepts kicks from the own team and blocks kicks of the other

team.

“search-for-ball” and turn themselves for the ball, using option“turn-for-ball” (cf. sect. 4.2.1.1). After the

striker finished its kick,“another-teammate-is-performing-a-kick”is not true anymore. In state“intercept-

after-kick”, the robot still turns for the ball until the ball does not roll anymore (low ball speed), the ball

passed the robot forward (x position of ball greater than of the robot), the ball is not seen anymore, or after

a timeout of 3 seconds.

4.2.3.3 Goalie

The GermanTeamhad one of the best defenses in the RoboCup 2004 tournament, receiving only 8 goals

compared to 65 goals scored by the team. This was achieved with a almost not moving goalie, standing at the

right position for most of the time. As even small errors in the localization can make the robot believe that it

68



4.2 Playing Soccer with XABSL

a) b)

Figure 4.19:a) Option“goalie-position” positions the robot inside the goal. b) Option“goalie-clear-ball”

tries to get the ball out of the penalty area.

is beside and not inside the own goal, the goalie behavior is much more dependent on good localization than

the behaviors of the field players. The goalie behaviors have to support the localization with appropriate

head movements and calm actions – it is very often a good strategy to let the goalie not move at all.

Option“goalie-position” (cf. fig 4.19a) makes use of the basic behavior“goalie-position”, which lets the

robot position between the ball and the center of the own goal. To deal with errors in the localization, inside

that basic behavior the robot’s position is corrected using the odometry and the ball position – the robot uses

the ball as a landmark and the odometry is trusted more than the position provided by the self localization.

If the robot does not move (the basic behavior requests a“stand” motion), in the state“ball-just-seen-not-

moving” the head control mode is set to“search-for-ball” (the head looks only at the ball), allowing for a

better detection of fast balls. Otherwise, in state“ball-just-seen” the self localization is supported by setting

the head control mode to“search-auto” (which scans also for landmarks). If the ball is not seen for 3.5

seconds, the robot walks to the center of the goal using basic behavior“go-to-point” .

Option “goalie-clear-ball” (cf. fig 4.19b) is responsible for the ball handling of the goalie. As there is

mostly the striker and defensive supporter in the near, the task of the goalie is not to kick the ball very far

(which requires strong and therefore dangerous kicks) but just to move it out of the penalty area. As there

are often opponent robots that obstruct the goalie, no exact approaching of the ball is tried. Instead, in
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Figure 4.20:Option“playing-goalie” implements the goalkeeper behavior.

state“walk” the basic behavior“go-to-ball-without-turning” is used. Thereby the robot does not turn at

all, which is faster than the normal“go-to-ball” basic behavior. If by chance the ball is in a good starting

position for a kick (depending on a special kick selection table for the goalie, cf. sect. 4.2.1.4), in state

“kick” a kick is performed. If it happens that the ball is behind the goalie (x position of the ball greater than

the x position of the robot), in state“ball-behind” option “turn-and-release-and-kick”(cf. sect. 4.2.1.4) is

used to clear the ball.

The complete goalkeeper behavior is implemented in option“playing-goalie” (cf. fig. 4.20). In the initial

state“position” , option“goalie-position” is selected. If the robot is for some reason far out the own penalty

area for some reason, it returns to it in state“return” using basic behavior“goalie-posion-return”, which

is faster than“goalie-position”. Similar to the supporters (cf. sect. 4.2.3.2), the goalie blocks fast balls by
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Figure 4.21:Option“playing” selects between the different roles.

jumping left, right, or ahead (states“block-middle”, “block-left” , and“block-right” ).

Only when the ball is far inside the own penalty area (more than 20 cm over the line), in state“clear-

ball” the option“goalie-clear-ball” is activated. There is already a transition back to state“position” when

the ball is still inside the penalty area, 10 cm to the line. That’s why it happens very often that the ball is

far inside the penalty area and the goalie does not move, standing between the ball and the center of the

goal. But this is a very good strategy, as opponent strikers only have a chance to get the ball across a well

positioned goalie when the goalie makes an error and opens a gap. Additionally, it can provoke that opponent

strikers are taken out due to the “goalie-pushing” rule or that continuous pushes from the strikers let the ball

roll out of the penalty area by chance. Only when there are no obstacles (opponent players) in the near, in

state“clear-ball-courageous”the goalie also clears a ball that is in the outer parts of the penalty area and it

returns to“position” when the ball is 7 cm out of the penalty area.

If the goalie does not see a previously seen ball anymore for more than two seconds, it is very likely

that the ball is at the side of the robot, where it can not be redetected by scanning around with the head.

Therefore, in state“head-back” the robot walks backwards to the rear wall of the own goal for maximum

four seconds, hoping to redetect a ball that is at the side of the robot. If the robot is at the field border besides

the goal and does not see the ball anymore, in state“head-back-from-border”it first walks to the center of

the goal line in order to not collide with one of the goal posts.
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4.2.3.4 Dynamic Role Assignments

Option “playing” (cf. fig. 4.21) assigns the different roles to the four robots. As only a specially marked

robot is allowed to be inside the own penalty area, player one is always the goalie. But the field players

negotiate, which of them is the striker or a supporter. Therefore, all players transmit trough WLAN the time,

how long they will approximately need to reach the ball. This time is computed such:

estimatedTimeToReachBall = distanceToBall / 0.2

+ 400.0 * fabs(angleBetweenBallAndOpponentGoal)

+ 2.0 * timeSinceBallWasSeenLast;

For every 10 cm to the ball it is assumed that the robot needs 500 ms to get there. The angle between the

ball and the opponent goal is multiplied with 400 ms and added, preferring robots that are already behind

the ball (no time is added) over robots that would have to grab the ball with the head or that would have to

turn behind it (maximum400 ms×π/2 is added). In the last term, two seconds are added for every second

that the ball was not seen, preferring robots that see the ball well.

For the role negotiations, the robot with the least estimated time to reach the ball is chosen to be the

striker. To stabilize the decision, the player that is already the striker gets a time bonus of 500 ms. From the

other robots, the robot with the higher x position (plus a bonus of 30 cm for the current offensive supporter)

becomes the offensive supporter.

As an exception, if a supporter positions in front of the opponent goal (option“position-offensive-

supporter-near-opponent-goal”, cf. sect. 4.2.3.2), it becomes immediately a striker if the ball is between

the robot and the opponent goal.

If the WLAN does not work, a fallback with semi-fixed mappings from robot numbers to roles is applied:

Player number two becomes striker if the ball is not far in the opponent half (x position of the ball less than

50 cm) and if the ball was seen in the last five seconds. Otherwise, it is a defensive supporter, staying in the

own half. Players three and four become strikers when the ball is not far in the own half (x position of ball

greater than -50 cm), otherwise they are offensive supporters. This can lead to situations (when the ball is

in the center of the field) in that all three field players are strikers, which does not look very good.

The computed role is provided to theXABSLbehaviors through the enumerated input symbol“role” .

However, in option“playing” this role is not directly mapped onto the states for the different roles. For

example, if the striker performs a kick or has the ball grabbed (the Boolean symbol“ball.is-handled-at-
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the-moment”is true), option“playing” remains in state“playing-striker” . Additionally, if the supporters

intercept a pass (option“playing-supporter” is not in one of its target states), there is also no transition to

other states. This is helpful if a ball is kicked in the direction of a supporter. It becomes only a striker when

the ball passed the robot or if the ball does not roll anymore, preventing the robot from running into the

wrong direction and possibly pushing the ball back.

4.2.4 Game Control

TheGermanTeamsupports the RoboCup Game Manager to minimize human interaction during the games.

This program is operated by a co-referee and sends via WLAN the state of the game (initial , ready, set,

playing, penalized, or finished), the current score, the team color, and which team has kick-off to both

teams. If the WLAN does not work for some reason, there is a sophisticated standardized interface to set

these states manually through the buttons of the robot.

If all the game states would be implemented in one option, the number of transitions between states

would be unmanageable high, as there are both transitions for messages from the game controller and

button press events. Additionally, theGermanTeamadded also transitions that are needed when the game

controller is wrongly operated. That’s why the implementation of the game control is distributed over three

options:“play-soccer”, “initial-ready-and-set”, and“initial-set-team-color”.

The option“play-soccer” (cf. fig. 4.22) is the root option of the option graph. It has a state for the“pe-

nalized” game state where the robot does not move, a state for the“finished” game state where the option

“finished” is executed (cf. sect. 4.2.5), and a state for the“playing” game state where the option“playing”

(cf. sect. 4.2.3.4) is executed. All other game states are managed by the state“initial-ready-and-set”, execut-

ing the option with the same name. As the option“initial-ready-and-set” also executes a kick-off behavior

when the“playing” message was received,“play-soccer” switches only from“initial-ready-and-set” to

“playing” when“initial-ready-and-set” is in its target state, indicating that the kick-off behavior is finished.

The option“initial-ready-and-set” (cf. fig. 4.23) implements the game states“initial” , “ready” , and

“set” , as well as the post-kick-off behavior. As the kick-off positions and the post-kick-off behaviors are

different for own and opponent kick-off, there are always two states for all game states.

In the beginning, if there was a goal, in the state“own-team-scored”or “opponent-team-scored”the

corresponding option performs a short happy or sad cheering move (cf. sect. 4.2.5). When these options
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Figure 4.22:Option“play-soccer” is the root option of the option graph.

reach their target states, the option switches to the states for the“ready” game state.

In the “ready” states, the option“go-to-kickoff-position” lets the robots autonomously walk to their

kickoff positions. These positions are read from input symbols to make them easy to configure. For own

kick-off, one robot (robot four) is allowed to go to the center circle. If it gets close to that, in“go-to-kickoff-

position” the stateposition-exactlybecomes active, trying to position the robot very precisely and such that

after the kick-off the robot can kick the ball straight ahead through the biggest gap between the opponents.

Additionally, robot three positions at the center line close to the border. To avoid that opponent teams adapt

to theGermanTeam’s kick-off strategies, there are different variants, which are selected randomly.

With the “set” message from the game manager or by touching the head button, the states for the“set”

game state are reached. Before own kick-off, the option“set-before-own-kickoff”is executed. This option

lets robot three, which positioned at the centerline, perform a different standing pose, allowing him a faster

start after the kick-off.

After the“playing” message from the game controller or after a pressed head button, the states“playing-

after-own-kickoff” and “playing-after-opponent-kickoff”become active, executing the corresponding

options. In option“playing-after-opponent-kickoff”the target state is immediately reached for the goalie,

robots three, and four. This lets the option“initial-ready-and-set” reach its target state“playing” , which

again allows for a transition to“playing” in option “play-soccer”. But robot two keeps standing for
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Figure 4.23:Option“initial-ready-and-set” is probably the most complicated looking one.
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a) b)

Figure 4.24:a) Option“own-team-scored”only chooses one out of four“scored” states, executes them for

a few seconds, and then terminates. b) At the end of option“finished” , all robots walk to the

center of the field for being also on the winner photo.

4.5 seconds to avoid that three field players run for the ball, possibly causing problems with the role

negotiations. In the option“playing-after-own-kickoff”, the goalie and player two immediately start playing

using the same target state mechanism. Player four performs a strong kick straight ahead. Player three runs

blind with the “dash” walk type for 2 seconds along the border into the opponent half. If player four hits

the gap between the opponent robots, player three can approach the ball at the opponent border before the

opponent team does. However, this strategy worked well only against weaker teams.

If the robots are operated by hand, the option“initial-ready-and-set” is in the states for the“initial” game

state at the beginning. Both execute the option“initial-set-teamcolor”, which allows for manual setting of

team color through the back buttons.
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Figure 4.25:The option graph of the head control behaviors consists of only three options. The actual work

is done in the basic behaviors.

4.2.5 Cheering and Artistry

The Sony Four Legged League is highly interesting to watch because the robots behave very life-like and the

game is highly engaging. To make the games more enjoyable for the crowds, cheering (and crying) behaviors

were implemented in addition to the wide range of kicks. After each goal, in option“own-team-scored”(cf.

fig. 4.24a) one of four happy looking cheering motions is executed. After a few seconds, the option reaches

its target state and the robots walk back to their kick-off positions. Accordingly, option“opponent-team-

scored”selects between four annoyed and sad looking motions.

After the game, when the own team lost, in option“finished” the robots just let their heads hang down and

behave sad. But when the own team won, the choreography is a bit more complex. All robots slowly walk

to the center of the field. During this, every seven seconds, they stop walking and perform synchronously

some cheering motions. After a while, all robots arrive in the center of the field and continuously perform

headstands, which gives a good foreground for the winner photo (cf. fig. 4.24b).

Besides the cheering motions for the soccer games, many other demos and artistry choreographies were

developed withXABSL.

4.3 Head Control with XABSL

Besides for behavior control,XABSLis also used by theGermanTeamfor the control of the head movements

in theHeadControlmodule. Although the head control behaviors are relatively simple, it turned out that the

previous C++ implemented version of the state machine was very bad to handle. None of the developers

really had an overview over the code and the whole thing was very difficult to debug. So the use ofXABSL
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Figure 4.26:Option “track-ball” is responsible for the ball tracking head control modes“search-for-ball”

and“search-auto”.

in that module was mainly motivated from software engineering aspects.

Figure 4.25 shows the admittedly small option graph. Most of the actual work is done in the basic be-

haviors and theXABSLoptions are only responsible to activate them in the right time. The main input for

the decisions are the requested head control mode, the ball model, states of the walking engine, and internal

states of the head path planning component.

The root option“head-control” only maps the head control mode to the subsequent options. In option

“catch-and-release-ball”it is made sure that a caught ball is released at the right position in walk cycle,

which is needed in the behavior control option“turn-and-release”(cf. sect. 4.2.1.3).

The only complex option in the head control is“track-ball” (cf. fig. 4.26). It implements the two ball

tracking head control modes“search-for-ball” (the robot only looks at the ball) and“search-auto” (the
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robot looks at the ball and regularly scans around for landmarks to improve the obstacle model and self

localization). If previously another head control mode than these two was requested, there is a transition

from the initial state“other-modes” to “scan-back-to-ball” if the ball was seen in the last second or to

“ball-lost” otherwise. In“ball-lost” , the basic behavior“find-ball” scans around along a fix path to redetect

the ball. If the ball is seen again, in state“found-ball-again” the head is strictly centered to the ball for 500

ms in order to stabilize the ball tracking. After that, in state“ball-seen” basic behavior“look-at-ball-and-

closest-landmark”looks at the ball and, if possible by keeping the ball in sight, the next landmark. If during

this the ball is not seen anymore for more than 500 ms and the ball was close before, in state“ball-just-lost”

the basic behavior“look-around-at-seen-ball”scans in the near of the previously seen ball. If that fails, the

whole area of view is again scanned in“ball-lost” . If in “ball-seen” the ball gets lost and was seen far away

before, there is a direct transition to“ball-lost” .

For the“search-auto” mode, there is a transition from“ball-seen” to “directed-scan-away-from-ball”if

the ball was just seen consecutively for more than 1 second or if the ball rolls away from the robot. The robot

then in basic behavior“directed-scan-for-landmarks”scans for the next landmarks for maximum 800 ms.

After that, it scans back to the ball in state“scan-back-to-ball” using basic behavior“scan-back-to-ball”.

If the head arrived at angles where it should see the ball again, the ball is assumed to be lost and searched

again in“ball-lost” . If during the whole scanning procedure the head control mode changes back from

“search-auto” to “search-for-ball” , the head immediately returns to the ball in state“return-to-ball” .

To conclude, it would not have been necessary to employXABSLfor head control. Nevertheless, it made

the development process more straightforward and manageable.

4.4 XABSL in the ASCII Soccer Simulator

The ASCII Soccer environment was developed by Tucker Balch around 1995 [10]. In this very simple soccer

simulation the field is displayed on a text terminal (cf. fig. 4.27. It is 78 characters long and 21 lines wide.

Two teams of four players each are displayed with “>” and “<” characters. They try to get the ball (“o”)

into the opponent goal. The complete right hand and left hand sides of the field are the goals. A game lasts

until one team has scored 7 goals.

The players are able to directly sense their position on the field, the rough direction of the ball (N , NE,

E, SE, S, SW , W , or NW ), and the objects (ball, players, wall) which are in the direct neighborhood (on

one of the 8 neighbor places) of the player. The action set of the agents is very limited: They can either move
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Figure 4.27:A scene from an ASCII Soccer game shortly after a kick off. The team “Dynamic Rollers” (“>”)

plays from left to right and theXABSLexample agent team (“<”) from right to left.

to one of the eight neighboring places or kick. The simulation is not deterministic. From crowds kicking the

ball at the same time, it is not predictable where the ball goes to.

Due to the accessibility to a nearly complete world model and the limited action set it was possible to

develop a simple and easy to understandXABSLagent team in short time. The root option switches between

a defender behavior which positions behind the ball, a striker behavior that positions in front of the ball, and

a midfielder behavior that is responsible for ball handling. These roles are assigned dynamically. The two

players which are closest to the ball are the midfielders, the other two a defender or a striker depending on

which of them is closer to the own goal. The ball handling selects between dribbling (when no team mate is

in front of the player) and passing. A complete documentation of the behaviors can be found at theXABSL

web site [45].

This simple implementation was able to win against all teams except one that were available at the

ascii-soccer home page [10].

The ASCII SoccerXABSLexample implementation can be downloaded together with the language defi-

nitions, the tools, and theXabsl2Enginefor free from theXABSLweb site [45].
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Figure 4.28:The option graph for the ascii-soccerXABSLexample agent team.
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5 Conclusion and Future Work

This thesis introduced theExtensible Agent Behavior Specification Languageas an XML dialect that allows

to conveniently develop the behavior of autonomous agents. The advantage of the underlying layered state

machine architecture was shown. Together with all its supporting components, theXABSLsystem proved to

be a powerful tool for behavior engineering.

It was shown how theGermanTeamsuccessfully employed the system to develop complex team behaviors

for RoboCup competitions in the Sony Four Legged League resulting in top positions at the RoboCup

German Open in the last four years and the win of the RoboCup world championship 2004.

The language and the code libraryXabslEngineare independent from the software platform that the

GermanTeamuses. It is relatively easy to employXABSLon other robotic platforms. TheXABSLschema

files, theXabslEnginelibrary, and the tools are open source and publicly available at theXABSLweb site

[45].

5.1 Results at RoboCup Competitions

The Aibo Team Humboldtwon the German Open 2001 with a flat state machine approach (cf. fig. 5.1a).

Afterwards a layered state machine approach was developed for the participation of theGermanTeamat the

RoboCup 2001 competitions in Seattle. The team did not reach the quarter finals there (cf. fig 5.1b).

The first version ofXABSLwas used by theAibo Team Humboldtat the German Open 2002 in Paderborn.

Although the team scored more than one third of all goals scored in the tournament, it unfortunately was

beaten by theDarmstadt Dribbling Dackels0:1 in the final (cf. fig 5.1c). At the RoboCup 2002 competitions

in Fukuoka, theGermanTeamfinished the round robin being second in the group (cf. fig 5.1d). In the quarter

final, the team had to compete against previous year’s world champion UNSW and lost. But there were only

two other teams that scored a goal against CMU, the 2002 year’s world champion, namely Tokyo in the

round robin and UNSW in the final. Only one other team, could score against UNSW, this was CMU in the

final.
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a) b)

ATH – Darmstadt Dribbling Dackels 1 : 0

ATH – S.P.Q.R. Legged 4 : 0

ATH – Les 3 Mousquetaires 2 : 1

ATH – Darmstadt Dribbling Dackels 5 : 1

Round Robin

Final

GermanTeam – Baby Tigers 1 : 4

GermanTeam – UNSW 0 : 11

GermanTeam – UW Huskies 3 : 0

Round Robin

c) d)

ATH – Les 3 Mousquetaires 3 : 0

ATH – Bremen Byters 4 : 0

ATH – Darmstadt Dribbling Dackels 1 : 0

ATH – Microsoft Hellhounds 3 : 0

ATH – Darmstadt Dribbling Dackels 0 : 1

Final

Round Robin

GermanTeam – S.P.Q.R. Legged 5 : 0

GermanTeam – Araibo 4 : 0

GermanTeam – CMU 1 : 3

GermanTeam – Georgia Tech 4 1

GermanTeam – UNSW 1 : 6

Round Robin

Quarter Final

:

e) f)

ATH – Dynamo-Pavlov Uppsala 6 : 0

ATH – Les 3 Mousquetaires 4 : 0

ATH – SPQR-Legged 3 : 1

ATH – Bremen Byters 3 : 0

ATH – Microsoft Hellhounds 3 : 0

ATH – Darmstadt Dribbling Dackels 1 : 2

Round Robin

Quarter Final / Semi Final / Final

GermanTeam – Austin Villa 9 : 0

GermanTeam – UTS Unleashed! 2 : 2

GermanTeam – UPennalizers 3 : 1

GermanTeam – Asura 5 : 0

GermanTeam – CMU               (x:x+1) 2 : 2

Round Robin

Quarter Final

g) h)

ATH – Hamburg Dog Bots 4 : 2

ATH – Les 3 Mousquetaires 12 : 0

ATH – Microsoft Hellhounds 2 : 1

ATH – S.P.Q.R. Legged 15 : 0

ATH – Hamburg Dog Bots 2 : 1

ATH – Darmstadt Dribbling Dackels 2 : 1

Round Robin

Quarter Final / Semi Final / Final

GermanTeam – UNSW 4 : 2

GermanTeam – Team Chaos 13 : 0

GermanTeam – ASURA 6 : 1

GermanTeam – Georgia Tech 12 : 0

GermanTeam – Baby Tigers 7 : 0

GermanTeam – CMU 9 : 0

GermanTeam – NUBOTS 9 : 2

GermanTeam – UTS-Unleashed 5 : 3

Quarter Final / Semi Final / Final

Round Robin

Figure 5.1:Competition results. a)Aibo Team Humboldtat the German Open 2001 in Paderborn. b)German-

Teamat RoboCup 2001 in Seattle. c) Aibo Team Humboldt at the German Open 2002 in Pader-

born. d)GermanTeamat RoboCup 2002 in Fukuoka. e) Aibo Team Humboldt at the German

Open 2003 in Paderborn. f)GermanTeamat RoboCup 2003 in Padova. g) Aibo Team Humboldt

at the German Open 2004 in Paderborn. h)GermanTeamat RoboCup 2004 in Lisbon.
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At the German Open 2003, all four members of theGermanTeamusedXABSLfor behavior description.

Three of them were placed first, second, and third. Again theAibo Team Humboldtscored more than one

third of all goals scored in the tournament and again it unfortunately lost the final in the penalty shoot out

against theDarmstadt Dribbling Dackels(cf. fig 5.1e). At the RoboCup competitions 2003 in Padova, the

GermanTeamfinished the round robin as winner of its group, even beating the later runner-up, the UPen-

nalizers. In the quarter final, theGermanTeamlost in a 29 minutes penalty shootout against CMPack’03.

However, theGermanTeamwon the RoboCup Challenge with 70 out of 72 possible points, the behaviors

for the challenge being also written inXABSL. The results of the games are shown in fig. 5.1f.

From 2003 to 2004, the behaviors of theAibo Team Humboldtand theGermanTeamimproved most

compared to previous years. As the team could rely on a fully developed software architecture and perception

and motor control capabilities, it had much time to enhance and fine-tune the behaviors of the robots. This

lead to a win of theAibo Team Humboldtat the German Open 2004 (cf. fig. 5.1g). Again, all members of the

German TeamusedXABSLfor behavior engineering. Interestingly, the teams were the better, the less other

methods for decision making besidesXABSLthey implemented. The newcomer teamHamburg Dog Bots,

who used the 2003 code release of theGermanTeam, almost only improved theXABSLhigh level behaviors

and became third. Then, in the RoboCup world championships 2004 in Lisbon, theGermanTeamfinally

became world champion, winning all its games clearly and having the second highest goal difference after

the runner upUTS.

The performance of theAibo Team Humboldtand theGermanTeamimproved from year to year. On

the one hand, this is due to the enhanced perception, modelling, and motor control capabilities but, on the

other hand, significantly due to the advances made in the behavior control architecture and the implemented

behaviors itself.

Looking at the international RoboCup competition results of theGermanTeam, one can see a significant

increase in the accumulated goal difference. From 4:15 in 2001, it went up to 15:10 in 2002, 21:6 in 2003,

and 65:8 in 2004.

5.2 Future Work

XABSLproved to be a powerful tool for fast and efficient behavior engineering of autonomous agents. It

helped theGermanTeamto become the 2004 RoboCup world champion and there are bright prospects for

XABSLto be the basis for further behavior control developments of the team as well as for other teams who
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will probably use the German Team’s 2004 code release for further developments.

TheXABSLarchitecture, language, and tools are well documented and there is a good chance that other

members of theAibo Team Humboldtor members of theGermanTeamwill continue the work. From the

author’s point of view, there are potentials for improving the performance at RoboCup competitions in near

all fields of information processing: perception, world modelling, motor control, behavior implementations,

and the behavior architecture.

The less uncertainty there is in the data achieved from perception and world modelling processes, the

more advanced and complex behaviors can be developed. For instance, intercept behaviors can be developed

only if there is an accurate and reliable model of the ball speed. More deliberative passing and positioning

behaviors require a stable model for the positions of the other players.

Faster and more accurate motor control programs decrease the uncertainty in the performed actions and

are a general advantage in RoboCup competitions. The best team strategies are useless if robots of the

opponent team are able to walk double speed.

5.2.1 Possible Extensions to XABSL

People who start working withXABSLare most bothered about the rigid limitations in the allowed data types

for symbols, functions, and parameters. For example, the type of option and basic behavior parameters has

always to be “decimal”, forcing developers to use decimal0 for false and1 for true if they want to

pass Boolean parameters to options or basic behaviors. This restrictions are due to the decision not to write

an ownXABSLcompiler but to use XML Schema for validation. But it would be possible to allow more data

types in several contexts.

It would be much work, as the Schema definitions with the ID constraints, the XSLT style sheets for code

and documentation generation, theXabslEngine, and debug tools would have to be extended.

The generation of the HTML documentation containing SVG graphs for state machines, option graphs,

and decision trees helps the developers very much to intuitively see what their behaviors do. But the work

with XABSLcould be much more convenient if there would be a graphical editor. The main problem in

writing an editor from scratch or in adapting an existing state chart editor is the complexity of the transitions

between states. For example, the graph in figure 3.2 is a strong simplification of the documented option.

There is shown maximum one edge from one state to another, although there can be many reasons for a

transition between two states, resulting from complex hierarchical decision trees. Standard state chart editors
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do not have this problems as there are only simple Boolean predicates allowed for transitions between states.

Before writing anXABSLeditor, one needs a good idea how to cope with the hierarchical decision trees

and multiple transitions between states. Another possibility would be the remove the concept of the decision

trees fromXABSL, defining only simple Boolean predicates for transitions between states. But this would

restrict the expressiveness of the language very much.

5.2.2 The Double Pass Architecture

The camera of the Aibo ERS7 provides images every 33 ms (30 Hz). At the moment, the perception rou-

tines, the world modelling, and the behavior programs in the software architecture of theGermanTeamare

executed in the same thread (system processCognition). As the joints of the robot have to be controlled

every 8 ms (125 Hz), the concurrent system processMotion executes the motor control programs. Almost

all of the processing time of theCognitionprocess is used by the image processing and self localization

programs. Up to now, the behavior control programs are executed for less than 1 ms. (The execution time

is 0, but the time can be measured with a resolution of only 1 ms.) All high-level planning algorithms, the

negotiations, and strategy decisions are executed together with the low-level behaviors within one execution

of the option graph.

In future behavior control developments, it might happen that some planning algorithms are much more

time consuming than the algorithms that are used at the moment. As soon as these algorithms are so time

consuming that the whole image processing frame rate cannot be guaranteed, it might be useful to apply the

double pass architecture[16].

In this architectureoptionssimilar to the ones inXABSLare ordered hierarchically in a rooted acyclic

graph, the option tree (cf. fig 5.2). Different fromXABSLoptions where arbitrary transitions between states

are allowed, options in the double pass architecture are eitherchoice optionsthat choose between a set of

subordinated options based on a utility orsequence optionsthat perform subsequent behaviors in a fixed

sequence (script).

The planning and decision making is distributed over two passes: Thedeliberatorpass (cf. fig 5.2a) is

responsible for the choice of intentions and for long-term planning. It sets up hierarchical plans and marks

parts of the option tree as “intended”. The deliberator plans far enough into the future so that no time

problems arise when it is not executed often enough. Theexecutorpass (cf. fig 5.2b) is responsible for

time critical decisions. It focuses only on the options that were marked as “intended” by the deliberator,

what guaranties that only a few and little time consuming decisions are made in order to satisfy real-time
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Figure 5.2:An option tree in the double pass architecture (from [16], example from the simulation league

teamAT-Humboldt). a) The intention subtree marked by the deliberator pass. b) The activity path

of the executor.
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conditions.

Note that there is no separation of the option tree into “deliberative” behaviors near the root of the tree

and “reactive” behaviors near the leaves. Both the deliberator and the executor work on the same options.

There are two ways to synchronize this two passes: they can work in parallel or in sequence. Parallel

work means that the deliberator and the executor run in two concurrent system processes. But on the Aibo

system platformOpenRit turned out that additional processes and the resulting inter-process communication

are very expensive. Therefore, it might be better to execute the two passes in the same system process in

sequential order. In this case, the deliberator pass would need to be interrupted when real-time demands

require the executor to be executed. After that the deliberator would continue its execution where had been

interrupted before.

If the double pass architecture is applied to the Sony Four Legged League, theXABSLlanguage and the

XabslEnginewould have to be adapted to it. For this purpose, it is possible to rely on the work of the ATH

simulation league team at the artificial intelligence lab [11], because they also developed an XML based

behavior description language following the double pass architecture.

A future goal might also be to unifyXABSLand the work that was done in the simulation league team of

the lab.

5.2.3 Learning Basic Capabilities

In the past, many ball handling behaviors were fine-tuned manually. Although theXABSLsystem provides

a short change-compile-test cycle, this is a time consuming task. Besides, it is difficult to tune manually

different parameters that are not independent from each other.

Many low-level behaviors such as ball approaching, ball grabbing, or turning around the ball could be

improved withmachine learningmethods (cf. [52]). But a problem could be to find good performance

measures or reward functions for the tasks. For instance when trying to grab a ball, it is difficult to measure

whether the action was successful. Moreover, the number of training iterations is very limited. As there is

no simulator for the Aibo robot that could satisfyingly simulate such low-level behaviors, the experiments

have to be done with real robots, which is very time-consuming.

For some learning tasksreinforcement learning(cf. [68]) could be used. Stone [67] has shown how to train

RoboCup simulation league soccer agents with that method. Reinforcement learning is a useful framework

for dealing with sequential decision problems. In this unsupervised learning method the search space is

explored by trial and error. Agents learn the mapping from situations to actions by getting reward signals.
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It could be problematic to apply reinforcement learning to real robots due to the usually large number of

training iterations.

A possibly better learning method would begenetic algorithms(cf. [56, 57]). With that method, a fixed set

of parameters can be optimized using the methods of natural evolution. These parameters could be passed

to XABSLoptions via input symbols. If starting with a manually tuned parameter set, possibly the behaviors

would improve after a few generations already.

5.2.4 Detecting Strategies and Adapting to Opponent Teams

As already mentioned in the preface of this section, the capability to detect opponent strategies could im-

prove the performance of the robots. For instance, it would be helpful for the agents to know under which

conditions the opponent goalkeeper leaves its own penalty area. Visser et al. [71, 21] and Riley and Veloso

[65] have shown how to build qualitative and quantitative opponent models that can be used to adapt the

strategies of the own team. However, this work was done in the simulation league, where a “coach” agent

has a centralized and complete view of the world.

At the moment, such a complete and accurate world model can not be obtained in the Sony Four Legged

League. The robots have only a poor and inconsistent knowledge about the positions of the opponent robots.

Up to now, the robots do not recognize why the ball has moved. But this basic knowledge would be necessary

in order to recognize opponent strategies.

Nevertheless, it could be possible to adapt to opponent teams by measuring the success of the own ac-

tions. The easiest way to do that could be measuring the goal difference (which is sent through wireless

communication by a referee program). Much more difficult would be is the observation of the success of

single behaviors. As already mentioned above, up to now the perception and modelling capabilities of the

robots are too limited to get reliable performance measures. But a good criterion for success could be how

often a behavior was stopped. Usually, behaviors written inXABSLhave target states. Only if a behavior

was successful, such a target state is reached.

For that, theXabslEnginewould have to be extended. For all options, the number of activations, average

option and state activation times, and the number of finished activations (reached target states) would have

to be measured. These data could be made available for decision making either by extending theXABSL

language for language elements that allow to access the statistics or by passing it to the options using custom

input symbols. Possibly, such statistics could be used to choose more successful behaviors more often.
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GermanTeam 2001. InRoboCup 2001 Robot Soccer World Cup V, A. Birk, S. Coradeschi, S. Tadokoro

(Eds.), number 2377 in Lecture Notes in Computer Science, pages 705–708. Springer, 2001. More

detailed in: http://www.tzi.de/kogrob/papers/GermanTeam2001report.pdf.

[16] Hans-Dieter Burkhard, Joscha Bach, Ralf Berger, Birger Brunswiek, and Michael Gollin. Mental

models for robot control. InM.Beetz et al (Eds.): Advances in Plan-Based Control of Robotic Agents,

Lecture Notes in Artificial Intelligence, pages 71–88, 2002.

[17] James Clark. W3C recommendation: XSL transformations (XSLT) version 1.0. 1999.

http://www.w3.org/TR/XSLT.

[18] P. R. Cohen and H. J. Levesque. Intention is choice with commitment.Artificial Intelligence,

42(3):213–261, 1990.
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[46] Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Jüngel. Designing agent behavior
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