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Learning the meanings of words requires coping with referential uncertainty – a learner hearing a novel word cannot be sure which
aspects or properties of the referred object or event comprise the meaning of the word. Data from developmental psychology suggests
that human learners grasp the important aspects of many novel words after only a few exposures, a phenomenon known as fast mapping.
Traditionally, word learning is viewed as a mapping task, in which the learner has to map a set of forms onto a set of pre-existing
concepts. We criticize this approach and argue instead for a flexible nature of the coupling between form and meanings as a solution
to the problem of referential uncertainty. We implemented and tested the model in populations of humanoid robots that play situated
language games about objects in their shared environment. Results show that the model can handle an exponential increase in uncertainty
and allows scaling towards very large meaning spaces, while retaining the ability to grasp an operational meaning almost instantly for
a great number of words. Additionally, the model captures some aspects of the flexibility of form-meaning associations found in human
languages. Meanings of words can shift between being very specific (names) and general (e.g. “small”). We show that this specificity is
biased not by the model itself but by the distribution of object properties in the world.
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1 Introduction

One of the greatest challenges in acquiring a lexicon is overcoming the inherent referential uncertainty
upon hearing a novel word. This is because linguistic symbols embody a rich variety of perspectives –
speakers use different words to draw the attention of the hearer to different aspects of the same object
or event. Some of these contrasts are generality-specificity (“thing”, “furniture”, “chair”, “desk chair”),
perspective (“chase-flee”, “buy-sell”, “come-go”, “borrow-lend”) and function (“father”, “lawyer”, “man”,
“American”) or (“coast”, “shore”, “beach”) [Langacker, 1987]. Just from perceiving an object and hearing
a word that supposedly describes that object, a word learner cannot know the intended meaning of the
word. This problem is commonly related to the term “referential indeterminacy”. Quine [1960] presented
an example picturing an anthropologist studying the – unknown to him – language of a tribe. One of the
natives utters the word “gavagai” after seeing a rabbit. How can, even after repeated uses of this word,
the anthropologist ever come to know the meaning of “gavagai”? It could mean rabbit, an undetached
rabbit part, food, running animal or even that it’s going to rain. Children are very good at dealing with
this problem. From the age of around eighteen months to the age of six years, they acquire on average
nine new words a day (or almost one per waking hour). They can infer usable word meanings on the basis
of just a few exposures, often without explicit training or feedback – a phenomenon that is known as fast
mapping [Carey, 1978, Bloom, 2000].

Word learning is commonly viewed as a mapping task, in which a word learner has to map a set of
forms onto a set of pre-established concepts [Bloom, 2000]. The implicit assumption is that learners have
access to a number of potential meanings and need to choose (or guess) the correct one. Building on this
assumption, several solutions to the problem of referential uncertainty have been theorized. One proposal
is that the learner is endowed with several word learning constraints (or biases) that guide him towards
the right mapping [see for example Gleitman, 1990, Markman, 1992]. Although the problem of referential
uncertainty is acknowledged in this approach, it is also largely circumvented by claiming that learners

∗Corresponding author. Email: pieter@arti.vub.ac.be



February 10, 2010 12:10 Connection Science flexible

2 P. Wellens, M. Loetzsch and L. Steels

are able to almost instantaneously establish a mapping between a novel word and its meaning. Another
suggestion proposes that learners enumerate all possible meanings the first time they are confronted with a
novel word and prune this set in subsequent communicative interactions that involve the same word. This
approach, while taking into account the problem of referential uncertainty, does not explain fast mapping.
Smith et al. [2006] has shown that under the assumption of atomic word meanings, large vocabularies are
learnable through cross-situational learning. But the time needed to grasp a usable meaning far exceeds
the number of exposures as observed in children, especially when scaling to high dimensional meaning
spaces. This is why often these two proposals go together: word learners use constraints to make a limited
list of initial mappings and rule out all except one hypothesis later on.

Instead of characterizing a child as identifying the meaning of a word from a set of plausible possibilities,
Bowerman and Choi [2001] envision the child as constructing and gradually shaping word meanings. The
hypothesis is that “. . . the use of words in repeated discourse interactions in which different perspectives
are explicitly contrasted and shared, provide the raw material out of which the children of all cultures
construct the flexible and multi-perspectival – perhaps even dialogical – cognitive representations that
give human cognition much of its awesome and unique power” [Tomasello, 1999, p. 163]. Although
in this view learners also make guesses at the meanings of novel words, they are different in nature.
Children cannot have at hand all the concepts and perspectives that are embodied in the words of the
language they are learning – they have to construct them over time through language use. “For example,
many young children overextend words such as dog to cover all four-legged furry animals. One way
they home in on the adult extension of this word is by hearing many four-legged furry animals called
by other names such as horse and cow” [Tomasello, 2003, pp 73–74]. Moreover, the enormous diversity
found in human natural languages [Haspelmath et al., 2005, Levinson, 2001] and the subtleties in word
use [Fillmore, 1977] suggest that language learners can make few apriori assumptions and even if they
could, they still face a towering uncertainty in identifying the more subtle aspects of word meaning and use.

The problem of referential uncertainty differs depending on which of the above views on word learning
is followed. In this article, we present a computational model for dealing with referential uncertainty
that does not rely on enumerations of possible meanings or word learning constraints. Instead, we argue
for truly flexible representations of meanings and mechanisms for shaping these word meanings through
language use. We implemented the model in physical robotic agents that are able to perceive the world
through their cameras and have mechanisms to engage in communicative interactions with other robots.
Populations of these robots play language games [Wittgenstein, 1967, Steels, 2001] about objects in their
shared environment (see Figure 2). These games are routinized interactions in which a speaker tries, using
language, to draw the attention of a hearer to a particular object in a shared scene. The speaker and
hearer give each other feedback as to whether this was successful and point to the intended object in cases
of failure. This allows the population, over the course of many interaction, to self-organize a language for
talking about physical objects. Note that agents are implemented such that they do not have access to
internal representations of other agents – there is no meaning transfer, telepathy or central control.

A long history of experiments already exists on the emergence of communication systems in the language
game paradigm, both in simulated worlds and with robots interacting in real environments. Since the
early nineties, complexity has steadily increased in the agents’ communicative task, and thus also in the
nature of the coupling between form and meaning. One of the first models of lexicon formation was the
Naming Game [Steels, 1995], in which simulated agents have to agree on names for pre-conceptualized
individual objects. Technically, they had to establish one-to-one mappings between words and (given)
symbolic representations without internal structure as illustrated in Figure 1a. The problem of referential
uncertainty does not appear in the Naming Game – when a speaker points to an object, it is immediately
clear for the hearer which individual concept to associate with a novel word. The main focus in the Naming
Game was on the problem of how to reach lexical conventions and coherence in a population of interacting
agents. Since each agent can invent new words, different words with the same meaning (synonyms) spread
in the population, which poses a problem for reaching coherence. In a default naming game implementation
agents keep different hypotheses about the meaning of a word in separate one-to-one mappings between
names and individuals. Each mapping is scored and synonymy damping mechanisms, mainly based on
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Figure 1. Increasing complexity in the nature of the coupling between form and meaning. Hypothetical example lexicons of one agent
are shown for four different models of lexicon formation. Line widths denote different connection weights (scores). a) One-to-one
mappings between names and individuals in the Naming Game. There can be competing mappings involving the same individual

(synonyms). b) One-to-one mappings between words and single features in Guessing Games. Additionally to synonymy, there can be
competing mappings involving the same words (homonymy). c) Many-to-one mappings between sets of features and words. In addition

to synonymy and homonymy, words can be mapped to different competing sets of features that partially overlap each other. d)
Associations as proposed in this article. Competition is not explicitly represented but words have flexible associations to different

features that are shaped through language use.

lateral inhibition acting on these scores, were proposed to cope with the problem of incoherence.
When objects in the world are not represented as holistic symbols but instead different conceptualizations

for the same object are possible, the problem of referential uncertainty appears. For example in Guessing
Games such as the Talking Heads experiment [Steels and Kaplan, 1999], agents establish scored one-to-one
mappings between words and perceptually grounded categories (or features, see Figure 1b). Hearers need
to guess which sensory quality (size, color, position, etc.) a word is about and then choose an appropriate
feature for that quality. In addition to synonymy, agents can adopt mappings to different features for the
same word (homonymy). The amount of referential uncertainty, as measured by the number of different
hypotheses, equals the number of different features of an object representation. One proposed mechanism
to overcome this uncertainty is a word learning constraint: agents choose the sensory quality that is most
salient in the scene (the difference between the topic and other objects in a scene is the highest for that
quality). More prominently, cross situational learning [Siskind, 1996, Smith, 2005, De Beule et al., 2006,
Smith et al., 2006, Vogt and Divina, 2007] has been shown to successfully solve the problem. In this
approach, agents enumerate all possible meanings upon hearing a novel word and gradually refine this set
by memorizing co-occurrences between forms and meanings. After many interactions, the mapping with
the highest co-occurrence wins over the others and is used as the meaning of the word.

In natural language, words may refer to more than just single features such as [red] or [small]. One of the
first models that allowed mappings between words and combinations of features as illustrated in Figure
1c was introduced by Van Looveren [1999]. It was shown to work when the number of object features is
low. Since the meaning of a word can be any subset of the features of an object, referential uncertainty
increases exponentially, as opposed to linearly in the guessing games outlined above. Suppose an object
is represented by 60 features. The number of all possible subsets of these 60 features is 1.152921 × 1018.
Cross-situational approaches as outlined above become truly unfeasible since an agent cannot enumerate
the long list of hypotheses which would be necessary to memorize co-occurrence relations. De Beule and
K. Bergen [2006] have shown that when there is competition between specific (many features) and general
(one feature) words, then general words will win over the specific ones because they are used more often
– resulting again in an one-to-one mapping such as in Figure 1b.

In the model presented in this article, uncertainty is captured in the representation of word meaning
itself (see Figure 1d). Instead of competing mappings that connect different sets of features to the same
word, words have flexible connections to different features that are constantly shaped by language use.
The model can be seen as an extension of cross situational learning, with the key difference that there
is no enumeration of competing hypotheses and therefore the model can scale to very high dimensional
hypothesis spaces. Learners do not take guesses, or choose from enumerations of possible meanings because
the uncertainty is simply too great. The remainder of this article is structured as follows: in the next section
we outline the experimental set-up that we use to test our approach. The model itself is explained in Section
3. Experimental results are presented in Section 4 and discussed in Section 5.
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Figure 2. Sony QRIO humanoid robots play a language game about physical objects in a shared scene.

2 Interacting Autonomous Robots

The robotic set-up used in this experiment is similar to other experiments that investigate the cultural
transmission of language in embodied agents [e.g. Steels and Kaplan, 1999, Steels and Loetzsch, 2008,
see Steels, 2001 for an overview]. The experimental set-up requires at least two robots with the ability to
perceive physical objects in a shared environment using their cameras, to track these objects persistently
over time and space and to extract features from these objects. The robots must establish joint attention
[Tomasello, 1995] in the sense that they share the same environment, locate some objects in their immediate
context, and know their mutual position and direction of view. Finally, there have to be non-linguistic
behaviors for signaling whether a communicative interaction was successful and, in case of failure, the
robots need to be able to point to the object they were talking about.

In this experiment, we use QRIO humanoid robots [Fujita et al., 2003] to test our model. The robots are
about 60cm high and weigh 7.3 kg. They have a wide variety of sensors, including two cameras in the head,
a microphone, and sensors in each motor joint to monitor posture and movement. Two QRIO robots are
placed in an office environment that contains a set of geometric and toy-like colored objects (see Figure 2).
Based on software developed for robotic soccer [Röfer et al., 2004], we developed a real-time visual object
recognition system that is able to detect and track objects in image sequences captured by the built-in
camera at the rate of 30 frames per second [Spranger, 2008]. The robots maintain continuous and persistent
models about the surrounding objects using probabilistic modeling techniques. As a result, each agent has
a representation of every object in the scene, including estimated position, size and color properties (see
the top of Figure 3). From each such model, values on ten continuous sensory channels are extracted. In
this experiment, these channels are the position of the object in an egocentric coordinate system (x and
y), the estimated size (width and height), the average brightness (luminance), average color values on a
green/red and a yellow/blue dimension (green-red and yellow-blue) and finally the uniformity of the
brightness and color values within the object (as the standard deviation of all pixels within the object
region in the camera image; stdev-luminance, stdev-green-red and stdev-yellow-blue). Note that
the language model (see next section) does not depend on the choice of these 10 channels. Any other quality
such as shape, texture, weight, sound, softness, etc. could be used, requiring techniques to construct it
from the sensori-motor interaction with the environment. Channel values are scaled between 0 and 1. This
interval is then split into four regions, a technique that could be compared to discrimination trees [Steels,
1997, Smith, 2001]. One out of four Boolean features is assigned to an object for each channel according
to the intervals of each channel value. For example the green/red value for obj-506 in Figure 3 is 0.88,
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Figure 3. Visual perception of an example scene for robots A and B. On the top, the scene as seen through the cameras of the two
robots and the object models constructed by the vision system are shown. The colored circles denote objects, the width of the circles
represents the width of the objects and the position in the graph shows the position of the objects relative to the robot. Black arrows

denote the position and orientation of the two robots. On the bottom, the features that were extracted for each object are shown. Since
both robots view the scene from different positions and lighting conditions, their perceptions of the scenes, and consequently the

features extracted from their object models, differs. Those features that are different between the two robots are printed in italics.

so the assigned feature is green-red-4. We refer to the list of objects with their associated features as
sensory context.

As mentioned earlier, populations of software agents play series of language games. All agents start with
empty lexicons and have never before seen any of the physical objects in their environment. Since we have
only two physical robots available and wish to model population sizes greater than two, they have to be
shared. In each interaction two agents, randomly drawn from the population, embody the two robots to
perceive their physical environment. At the start of the interaction, a human experimenter modifies the
scene by adding/removing objects or by changing the position/orientation of objects. The agents establish
a joint attentional scene [Tomasello, 1995] – a situation in which both robots attend to the same set of
objects in the environment and register the position and orientation of the other robot. Once such a state
is reached, the game starts. One of the agents is randomly assigned to take the role of the speaker and
the other the role of the hearer. Both agents perceive a sensory context (as described above) from the
joint attentional scene. The speaker randomly picks one object from his context to be the topic of this
interaction – his communicative goal will be to draw the attention of the hearer to that object. For this he
constructs an utterance, inventing new words when necessary and eventually uttering these words (these
mechanisms are described in detail in the following section). The hearer interprets the utterance using his
own lexicon and tries to find the object from his own perception of the scene that he believes to be most
probable given the utterance. It could happen, however, that the hearer is confronted with a novel word
or that his interpretation doesn’t match any of the objects in his context. In this case, the hearer signals a
communicative failure (by shaking his head). The speaker then points to the object he intended. When the
hearer did understand the utterance, he points to the interpreted topic. The speaker then compares this
object with the topic that he intended and either signals a communicative success (by nodding his head)
or a communicative failure (by pointing to his intended topic). Finally, at the end of each interaction
both agents modify their lexicons slightly based on the sensory context, the topic and the words used
(alignment).

Since conducting thousands of such language games with real robots would be very time-consuming
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Figure 4. Flow of one language game. A speaker and a hearer follow a routinized script. The speaker tries to draw the attention of the
hearer to a physical object in their shared environment. Both agents are able to monitor whether they reached communicative success

and thus learn from the interaction by pointing to the topic of the conversation and giving non-linguistic feedback. Populations of
agents gradually reach consensus about the meanings of words by taking turn being speaker and hearer in thousands of such games.

and also because we wanted repeatable and controlled experiments, we recorded the perceptions of the
two robots (as in Figure 3) for 150 different scenes, each containing between 2 and 4 different objects of
varying position and orientation out of a set of 10 physical objects. A random scene from this collection
is then chosen in every language game and the two different perceptions of robots A and B are presented
to the two interacting agents. In these simulations, agents point to objects by transmitting the x and y
coordinates of the objects (in their own egocentric reference system). The agent receiving these coordinates
can transform them into a location relative to its own position using the offset and orientation of the other
robot.

3 A Flexible Model of Word Learning

As explained in the previous section, the vision system represents objects as sets of Boolean features.
Though we are aware that such a representation lacks the richness needed to capture many interesting
phenomena of human language and cognition, we believe this representation is sufficient for investigating
the problem of referential uncertainty. Our language model itself is agnostic to the origins of the features.
Using such a straightforward representation of objects and allowing the meaning of a word to be any subset
of those features, the actual hypothesis space scales exponentially in the number of features. The first step
towards a solution is to include uncertainty in the representation of word meaning itself. This is achieved
by keeping an (un)certainty score for every feature in a form-meaning association instead of scoring the
meaning as a whole. This representation is strongly related to both fuzzy set theory [Zadeh, 1965], with
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Figure 5. A possible representation for the word “dog” in English. Every feature associated with the form “dog” is scored separately.

the degree of membership interpreted as the degree of (un)certainty, and prototype theory [Rosch, 1973].
Although this representation is identical to a fuzzy set, in what follows, we refer to the representation as
a weighted set to avoid confusion since we will redefine many set theoretic operations.

By allowing the certainty scores to change, the representation becomes adaptive and the need to ex-
plicitly enumerate competing hypotheses disappears. Thus, in contrast to most cross situational learning
models it is not necessary to maintain and update a set of competing hypotheses. It follows that during
production and interpretation (detailed in the following section) there is no need to choose between com-
peting hypotheses since there is only a single hypothesis. As an example, the meaning of the word “dog”
in Figure 5 is the complete set of scored associated features. Of course the features coming from the vision
system in our experiment are much more basic then those depicted in Figure 5.

3.1 Language Use in Production and Interpretation

It is possible to define a weighted similarity measure for the above representation, taking the certainty
scores as weights. Given two weighted sets of features as input, the measure returns a real number between
−1 and 1, respectively denoting disjunction and equality. This weighted similarity measure lies at the core
of the model and requires detailed elaboration but we first need to define some additional functions. Assume
a function Features(A) that takes as input a weighted set A and returns the normal set B containing
only the features from A, and another function CertaintySum(A) that takes as input a weighted set A
and returns a real number representing the sum of all the certainty scores. We can define the following
operations as slight modifications from those of fuzzy set theory:

Function Intersection(A, B)

ForEach (feature & certainty) in A
If Find feature in Features(B)
then Add (feature & certainty) to intersection;

End ForEach;

Return intersection;

End Intersection

Function Difference(A, B)

ForEach (feature & certainty) in A
If not Find feature in Features(B)
then Add (feature & certainty) to difference

End ForEach;

Return difference;

End Difference

Note that function Intersection is not commutative in contrast to its definition in fuzzy set theory
because it returns all shared features between A and B but takes the certainty scores from A. In what
follows we will also use the union operation on fuzzy sets as defined in Zadeh [1965]. It takes the normal
union of the two feature sets but when a feature appears in both A and B it takes the score with greater
certainty.
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Given these definitions we can define the weighted similarity measure as follows:

Function Similarity(A, B)

sharedSum ← CertaintySum(Intersection(A, B)) × CertaintySum(Intersection(B, A));
diffSum ← CertaintySum(Difference(A, B)) × CertaintySum(Difference(B, A));
similarity ← (sharedSum - diffSum) / CertaintySum(A) × CertaintySum(B);

Return similarity;

End Similarity

Given two weighted sets A and B, Similarity first takes all shared features and all disjoint features from
A and B. By using the CertaintySum function we allow the certainty scores to weigh in. It is clear that
sharing features is beneficial for the similarity while the opposite is true for features that are not shared.
Intuitively, Similarity(A,B) will be high when A and B share many features with high certainty scores.
Correspondingly, the result will be low when A and B have many disjoint features with high certainty
scores. Some examples:

Similarity(((a 1.0) (b 0.5) (c 0.7)), ((a 0.5) (b 0.5) (c 0.7))) = (2.2 × 1.7 - 0 × 0) / 2.2 × 1.7 = 1
Similarity(((a 1) (b 1) (c 1)), ((d 1) (e 1) (f 1))) = (0 × 0 - 3 × 3) / 3 × 3 = -1
Similarity(((a 0.9)), ((a 1) (b 0.1) (c 0.2))) = (0.9 × 1 - 0 × 0.3) / 0.9 × 1.3 = 0.77
Similarity(((a 0.5) (b 0.5) (c 0.5)), ((a 0.5) (c 0.5) (d 0.5))) = (1 × 1 - 0.5 × 0.5) / 1.5 × 1.5 =0.33

We now have the ingredients to describe production and interpretation which both rely heavily on this
similarity measure. As illustrated in Figure 4 the speaker, after picking a topic, must find an appropriate
utterance to indicate the topic as clearly as possible. This process is called production and is implemented
as follows:

Function Produce(context, topic, lexicon)

bestNewWord ← nil; // The current best new candidate word
utterance ← nil; // The utterance will gradually be constructed in here
productionScores ← nil;

Loop
ForEach word in (lexicon \ words in utterance) do

meaningOfUtterance ← FuzzySetUnion(ForEach word in utterance collect Meaning(word));
meaningOfExtendedUtterance ← FuzzySetUnion(meaningOfUtterance + Meaning(word));
objectSimilarities ← ForEach object in context

collect Similarity(meaningOfExtendedUtterance, object));
topicSimilarity ← GetSimilarity(topic, objectSimilarities);
closestOtherSimilarity ← Max(objectSimilarities \ topicSimilarity);
Add (topicSimilarity − closestOtherSimilarity) to productionScores;

End ForEach;
bestNewWord ← word with highest score in productionScores;
If ProductionScore(utterance with bestNewWord) > ProductionScore(utterance without bestNewWord)
then Add bestNewWord to utterance;
Else Break from Loop;

End Loop;

Return utterance;

End Produce

The ForEach loop will fill productionScores with a score for each unused word in the lexicon. This
score represents the effect of adding the word to the current utterance by calculating its similarity to the
topic and also taking into account its similarity to the rest of the context. For example if the topic is a red
object, but all other objects in the context are also red it doesn’t really help much to add the word “red”.
The bestNewWord is thus the word with the highest score in productionScores. If the productionScore
for the utterance including bestNewWord improves upon that of the previous utterance it gets added to
the utterance. If not, the search stops. In the end utterance is that subset of the lexicon that strikes the
optimal balance between being most similar to the topic and being most distant from the other objects
of the context. This results in context sensitive multi-word utterances and involves implicit, on-the-fly
discrimination using the lexicon.

The most important effect of using a similarity measure is the great flexibility in word combination,
especially in the beginning when the features have low certainty scores. Thanks to this flexibility the agents
can use (combinations of) words that do not fully conform to the meaning to be expressed, resembling what

pieter
Sticky Note
The pseudocode here differs from the one in the originally published paper. The code reflects the model more clearly and correctly now. 
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Langacker [2002] calls extension. The ability to use linguistic items beyond their specification is a necessity
in high dimensional spaces for maintaining a balance between lexicon size and coverage (expressiveness).

Interpretation amounts to looking up the meaning of all the uttered words, taking the union of their
(fuzzy) feature-sets and measuring the similarity between this set and every object in the context. The
hearer then points to the object with highest similarity.

Function Interpret(utterance, context)

interpretedMeaning ← Union of all meanings for known words in utterance;
objectSimilarities ← ForEach object in context collect Similarity(interpretedMeaning, object);
topic ← object with highest score in objectSimilarities;
If similarityScore of topic > 0
then Return topic;

End Interpret

3.2 Learning: Invention, Adoption and Alignment

After finding the best possible combination of words to describe the topic, the speaker first tries to interpret
his own utterance. In this process – which is called re-entrance [Steels, 2003] – the speaker places himself
in the role of the hearer and thus can check for potential misinterpretations, allowing him to rephrase
or remedy the utterance. When re-entrance leads the speaker to a different object than his own, which
means that no combination of words can discriminate the topic in the current context, refinement of the
lexicon is needed. The speaker invents a new form (a random string) and associates to it, with very low
initial certainty scores, all features of the topic that were not yet expressed in the utterance. Because word
meanings can shift, it might not be necessary to introduce a new word. Chances are that the lexicon just
needs a bit more time to develop. Therefore high similarity between the meaning of the utterance and the
topic translates to a lower likelihood of introducing a new word. In pseudocode the above process can be
operationalised as follows:

Function Invention(utterance, topic, context)

interpretedMeaning ← Union of all meanings for known words in utterance;
interpretedTopic ← Interpret(utterance, context);
If interpretedTopic 6= topic
then

interpretedSimilarity ← Similarity(interpretedMeaning, interpretedTopic);
topicSimilarity ← Similarity(interpretedMeaning,topic);
randomNr ← Random(0 1); // A random number between 0 and 1
If (interpretedSimilarity − topicSimilarity) > randomNr
then

newMeaning ← Features of (topic \ interpretedMeaning);
newWord ← makeWord(randomString, newMeaning);
Return newWord;

End Invention

When the hearer encounters one or more novel words in the utterance he needs a way to associate an
initial representation of meaning with the novel forms. First the hearer interprets the words he knows and
tries to play the game without adopting the novel forms. At the end of the game, when he has knowledge
of the topic (see Figure 4), the hearer associates all unexpressed features with all the novel forms. Just
as with invention the initial certainty scores start out very low, capturing the uncertainty of this initial
representation. Excluding the features of the already known words is the only constraint shaping the initial
representation. Note that there is no explicit enumeration of competing interpretations:

Function Adoption(utterance, topic, novelForms)

interpretedMeaning ← Union of all meanings for known words in utterance;
newMeaning ← Features of (topic \ interpretedMeaning)
ForEach form in novelForms do

Add makeWord(form, newMeaning) to lexicon;

End Adoption

Flexible word use entails that in a usage event some parts of the meanings are beneficial (the shared ones)
and others are not (the disjoint ones). If all features of the used meanings are beneficial in expressing the
topic it would not be extension but instantiation, which is rather the exception than the rule. As Langacker
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Figure 6. Dynamics of the language games in a population of 25 agents averaged over 10 runs of 50000 interactions. Values are plotted
for each interaction along the x-axis. Communicative success: For each successful interaction (the hearer understands the utterance and
is able to point to the object that was chosen as topic by the speaker), the value 1 is recorded, for each failure, 0. Values are averaged

over the last 100 interactions. Average lexicon size: the number of words each agent knows is averaged over the 25 agents of the
population. Lexicon coherence: This is a measure of how similar the lexicons of the agents are. For each word form known in the

population, the similarity function described in section 3.1 is applied to all pairs of words known by different agents and the results are
averaged. A value of 1 means that all 25 agents have identical lexicons, -1 means that they are completely different (each agent

associates completely different feature sets to each word form) and a value of 0 means that the number of shared and non-shared
features in the words of different agents is equal. Error bars are standard deviations across the 10 different experimental runs.

[2002] puts it, extension entails “strain” in the use of the linguistic items which in turn affects the meanings
of these linguistic items. This is operationalised by slightly shifting the certainty scores every time a word
is used in production or interpretation. The certainty score of the features that raised the similarity are
incremented and the others are decremented. This resembles the psychological phenomena of entrenchment,
and its counterpart semantic erosion (also refered to as semantic bleaching or desemantisation). Features
with a certainty score equal or less than 0 are removed, resulting in a more general word meaning. In failed
games the hearer adds all unexpressed features of the topic, again with very low certainty scores, to all
uttered words, thus making the meanings of those words more specific:

Function Align(agent, topic, utterance)

topicFeatures ← Features(topic);
sharedFeatures ← Features(utterance) ∩ topicFeatures;
disjointFeatures ← Features(utterance) \ topicFeatures;

// Update association scores
ForEach word in utterance

ForEach feature in Meaning(word)
If feature in sharedFeatures
then IncrementScore(word, feature);
Else DecrementScore(word, feature); // Also removes features if score < 0

If not CommunicatedSuccessfully(agent)
then // Make words more specific, only the hearer does this

ForEach word in utterance
do Associate disjointFeatures to word;

End Align

Combining similarity-based flexibility with entrenchment and semantic erosion, word meanings gradually
shape themselves to better conform with future use. Repeated over thousands of language games, the word
meanings progressively refine and shift, capturing frequently co-occurring features (clusters) in the world,
thus implementing a search through the enormous hypothesis space, and capturing only what is functionally
relevant.

4 Experimental Results

We tested our model by letting populations of 25 agents play repeated series of 50000 language games.
After only a few thousand games the agents reach their final lexicon size of 25 to 30 words (see Figure 6).
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form agent 1 agent 2 agent 3 agent 4

“murifo” x-4
luminance-2
stdev-luminance-2
y-3
stdev-yellow-blue-2

0.46
0.40
0.25
0.19
0.03

luminance-2
yellow-blue-4
green-red-2
x-4
height-4
stdev-green-red-2
stdev-yellow-blue-2
stdev-green-red-1
stdev-luminance-2
height-3
width-4
y-3

0.57
0.40
0.40
0.32
0.19
0.12
0.10
0.10
0.10
0.10
0.10
0.10

luminance-2
x-4
height-3
stdev-green-red-2
stdev-yellow-blue-3
yellow-blue-4
y-3

0.38
0.29
0.25
0.13
0.08
0.08
0.08

luminance-2
x-4
yellow-blue-4
green-red-2
stdev-yellow-blue-2
yellow-blue-2
stdev-green-red-3
stdev-luminance-4
height-2
y-3
stdev-yellow-blue-3

0.39
0.22
0.17
0.17
0.10
0.10
0.10
0.10
0.10
0.10
0.06

“nuside” luminance-2
yellow-blue-2
stdev-yellow-blue-1
stdev-luminance-1
height-3
stdev-green-red-1
y-3
x-4

0.58
0.49
0.39
0.24
0.19
0.17
0.17
0.17

yellow-blue-2
luminance-2
width-2
stdev-yellow-blue-1
stdev-luminance-1
x-3
stdev-green-red-2

0.68
0.59
0.31
0.29
0.17
0.17
0.08

yellow-blue-2
stdev-yellow-blue-1
height-3

0.56
0.27
0.24

yellow-blue-2
luminance-2
stdev-yellow-blue-1
height-3
stdev-luminance-1
width-2
y-3
x-2
green-red-1

0.69
0.36
0.36
0.24
0.15
0.13
0.13
0.06
0.02

“migata” green-red-2
luminance-2
yellow-blue-4
stdev-luminance-2
stdev-yellow-blue-3
stdev-green-red-2

0.50
0.48
0.39
0.33
0.30
0.22

luminance-2
stdev-luminance-2
stdev-green-red-2
stdev-yellow-blue-3
green-red-2
x-4

0.40
0.33
0.32
0.32
0.32
0.32

luminance-2
x-4
stdev-luminance-2
yellow-blue-4
green-red-2

0.44
0.38
0.21
0.20
0.10

luminance-2
stdev-luminance-2
x-4
yellow-blue-4
green-red-2
y-3

0.49
0.38
0.38
0.13
0.13
0.10

Figure 7. The meanings of the first three words of agent 1 (out of a population of 25 agents) and the corresponding meanings in the
lexicons of agents 2, 3 and 4 after 10000 interactions. The numbers on the right side are scores of the association to the feature.

Also from very early on (at around interaction 10000), the agents communicate successfully in more than
80% of the cases. Please note that on average each of the 25 agents takes part in only 800 out of 10000
interactions and thus play only 4000 games in total. Although the agents can communicate successfully
almost from the start, coherence is low (even negative) in the beginning, which means that the agents
associate very different feature sets to each word form. Coherence continuously increases over the course
of the following interactions and after 50000 games, communicative success has risen to 95%, indicating
that the agents progressively align their word meanings.

To explain the very low initial lexicon coherence, Figure 7 lists the meanings of the first three words of
agent 1 after 10000 interactions (communicative success ≈ 80%) and compares them with the meanings
that agents 2, 3 and 4 connect to these forms. For each word, the features associated to it and the scores
of the association are shown (sorted by score). It is immediately clear why lexicon coherence is so low in
the population: each agent indeed associates drastically different feature sets of highly varying size to the
same word forms. For example, all four agents associate different height information to the word “murifo”:
none for agent 1, height-4 and height-3 for agent 2, height-3 for agent 3 and height-2 for agent 4.
The number of features connected to the word “nuside” ranges from three (agent 3) up to nine (agent
4). For nearly every word form, each agent associates at least one feature that no other agent connects
to the same form. Words can even be associated to multiple features on the same sensory channel. For
example, agent 4 has the features yellow-blue-2 and yellow-blue-4, as well as stdev-yellow-blue-2
and stdev-yellow-blue-3 in its feature set for the word “murifo”. The agents could not, however, com-
municate successfully if word meanings were not (at least) partially shared. Despite all the differences,
the meanings of the three words in Figure 7 start to emerge: (almost) all agents associate x-4, y-3,
luminance-2 and yellow-blue-4 to the word “murifo”, giving it the meaning “far, left, uniformly dark
and blue”. For “nuside”, the features yellow-blue-2, luminance-2, height-3 and stdev-luminance-1
are shared, meaning “high and uniformly yellow”. The third word “migata” is associated by most of these
4 agents with green-red-2, luminance-2, yellow-blue-4 and x-4 (“far and turquoise”). This level of
coherence is already enough for the agents to communicate successfully in many different contexts. Coher-
ence continuously increases during the remaining 40000 interactions (see Figure 6), allowing the agents to
communicate successfully in 95% of the cases after 50000 interactions.
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Figure 8. Examples of flexible word meanings. A population of 25 agents played 50000 language games. Each graph shows, for one
particular word in the lexicon of agent 1, the strength of the association to different features. In order to keep the graphs readable, the

agents agents have only access to a subset of the 10 sensory channels (width, height, luminance, green-red, yellow-blue).

In order to understand how the agents are able to align their initially very different lexicons, we looked
at how the meanings of single words in one agent evolve over time. Not surprisingly, word meanings are
extraordinary flexible and shift constantly. Figure 8 gives four examples of the changing association of
word forms to different features. A word that constantly changes its dominant meaning is shown in Figure
8a. It is invented or adopted at around interaction 6000 and subsequently undergoes many meaning shifts.
Over time, the highest association scores are to height-3 (interaction 7000), yellow-blue-2 (interaction
16000), width-2 (21000 - 36000) and luminance-2 (40000). Despite that, many other features become
temporarily associated with the word, but are immediately discarded. The situation stabilizes towards the
end, giving the word its final meaning “narrow, dark, yellow”. In contrast, Figure 8b is an example of
a rather unsuccessful word. The initial meanings disappear quite soon and at around interaction 5000,
a stable set of 3 features arises. This meaning does not seem to spread over the population and the
word loses all its features after 22000 interactions. Thereafter the agent does not use the word himself in
production, but other agents in the population still use it, leading to new associations with features, which
also ultimately remain unsuccessful.

In our model, words can be associated with any number of features. They can be very general, connected
to only one feature (words such as “red” or “small”). They can also be very specific, similar to names, with
connections to many features. And they can shift from general to specific and back. Despite some other
associations that disappear very quickly, the word in Figure 8c is initially only connected to width-2. Over
the course of many interactions, more and more features are associated (luminance-3 at around interaction
3000, green-red-4 at interaction 7000 and finally height-2 at interaction 22000). So this word changed
from being very general (“thin”) to very specific (“thin, low, bright and red”). The word in Figure 8d
is an example of the opposite. It starts very specific, with connections to green-red-4, yellow-blue-2,
height-2, width-2, luminance-3 (“orange, small and bright”). It loses most of these features, becoming
very general (“orange”) towards the end.

As mentioned earlier, human learners can infer usable meanings for a novel word after only a few
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features is shown, given all words in the population. In the legend, for each channel the average difference between the perception of

robots A and B for all scenes in the data set are shown.

exposures. The graph in Figure 6 does not give us any insight on this issue, as it is about a population
in the process of bootstrapping a lexicon. To investigate whether our model performs comparably to fast
mapping, we added a new agent to a population that had already conventionalised a shared lexicon. The
new agent only takes the role of a hearer, resembling a child born into a population that speaks a fairly
stable language. The results, as depicted in Figure 9a, show that by the time of the second exposure 85%
of the novel words lead to a successful interpretation. Further exposures gradually improve this result and
by the tenth exposure all words result in a successful interpretation. This is even more surprising given
that the other members of the population are unaware they are talking to a new agent, and thus use
multi-word utterances, making it harder for the new agent to grasp the meanings of the words. In 20%
of the cases, the new agent successfully interprets the utterance on the very first exposure to a new word
because he understands enough of the other words to be able to point correctly.

When agents are embodied in physical robots, they have to deal with perceptual noise. The two robots
view the scene from different angles and under different lighting conditions, leading to different perceptions
of the same physical objects. However, the similarity in perception varies depending on the sensory channel.
The average distance between the perception of a physical object between robots A and B on each sensory
channel is shown in the legend of Figure 9b. This distance is computed by iterating over all objects of
all scenes in the data set and for each sensory channel averaging the distances of the sensory values
between the two robots. From the result we see that the most reliable sensory channels are green-red
(average distance 0.02), yellow-blue (0.03) and luminance (0.05). The most varied channels show a
very high level of difference, which makes them less suitable for successful communication: y (0.15), x
(0.13) and stdev-green-red (0.12). The quality of a sensory channel is reflected in the agents’ lexicons.
Figure 9b shows the strength with which features are associated, for each sensory channel. This average
score is computed for each channel by iterating over all the words in the population and averaging the
scores of connections to features on that channel. The highest average scores are for features on the
yellow-blue, luminance and green-red channels, the lowest for features on y, x and stdev-green-red.
This corresponds perfectly to the average sensory differences on these channels, showing that the agents
cope with perceptual differences by relying less on unreliable channels.

The world in which the robots interact “is structured because real-world attributes do not occur inde-
pendently of each other. Creatures with feathers are more likely also to have wings than creatures with
fur, and objects with the visual appearance of chairs are more likely to have funtional sit-on-ableness than
objects with the appearance of cats. That is, combinations of attributes of real objects do not occur uni-
formly. Some pairs, triples, or ntuples are quite probable, appearing in combination sometimes with one,
sometimes another attribute; others are rare; others logically cannot or empirically do not occur” [Rosch
et al., 1976, p. 383]. For example, objects that are yellow also tend to be bright, tall objects are often also
wide, and so on. This structure in the world is also reflected in the structure of the lexicons. Features that
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Figure 10. The effect of the amount of structure in a simulated world on the structure of the emerging language. Features are
represented as nodes in a directed graph and feature nodes that are connected by edges will occur together in simulated perceptions of

the world. a)-c) The co-occurrence graph used in condition 1 (highly unstructured world), condition 3 and condition 5 (highly
structured world). d) The average number of features associated to each word for conditions 1 to 5. Values are averaged over all words

in the population. Error bars are standard deviations over 10 repeated series of 50000 language games each.

co-occur often in will co-occur in the meanings of words. Since we cannot control the distributional prop-
erties of the object features in our previously recorded embodied data, we ran our model on a simulated
world where such control is possible. We represented 50 features as nodes of a directed graph as shown in
Figure 10a - 10c. Each node from index 1 to 50 was assigned a linearly decreasing probability for being
attached to an edge. For different experimental conditions, a varying number of edges was added to the
graph by connecting nodes randomly depending on their attachment probabilities. In each interaction, a
sensory context similar to the ones in Figure 3 and consisting of five objects, each represented by 5 features
is generated. Features were drawn by randomly selecting a node and taking also its neighbours having lower
indices, until five features were chosen. The amount of structure in the world was controlled by the number
of edges added to the graph: no edges in condition 1 (highly unstructured world, see Figure 10a), 20 in
condition 2, 50 in condition 3 (see Figure 10b, 100 in condition 4, and 400 in condition 5 (highly structured
world, see Figure 10c. We then ran series of 50000 language games with populations of 25 agents that are
identical to the ones in the experiments above except that they use perceptions from the five differently
structured simulated worlds, and compared the emerging lexicons as shown in Figure 10d. In condition 1,
features co-occur completely randomly, making any attempt to capture re-occurring patterns in the world
useless. This is clearly reflected in the lexicons of the agents. After about 10000 interactions, the words
become essentially direct mappings of one feature to one form. On the other hand, objects in condition 5
show very high regularity, allowing the agents to create very specific words for specific objects. As a result,
the average number of features covered in condition 5 is 2.75. The values for conditions 2–4 are between
these extremes. This shows that in our model the specificity of words is not biased by the model itself but
is a direct function of the structure in the world.
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5 Discussion & Conclusion

In this article we introduced a new model of word learning for dealing with the problem of referential
uncertainty. It does not rely on the simplifying assumptions made in previous models and instead builds
on the idea that in order to tackle the uncertainty one must embrace it. We therefore argue for an
adaptive representation of meaning that captures uncertainty at its core. This representation needs to be
accompanied by a flexible manner of language use, captured in our model by defining a similarity measure.
From this flexible use it follows that some parts of a meaning are beneficial, and others are not, opening
the possibility for entrenchment and semantic erosion effects. Combining these ideas and repeating their
effects over thousands of interactions results in a highly adaptive communication system with properties
resembling some aspects also found in human languages. We tested the model in populations of physical
robotic agents that engage in language games about objects in the real world. The results show that the
model performs remarkably well, despite the difficulties arising from embodiment in robots and the high
population size of 25 (compared to similar experiments).

In most previous experiments on lexicon formation, words are mapped to single components of meaning
(individuals, categories or other features). Even in models where words can map onto sets of features,
the dynamics are such that the agents finally arrive at one-to-one mappings between words and features
[De Beule and K. Bergen, 2006]. This is due to the assumption that general words and specific words
compete (against each other). Suppose there is a word “yellow” for the meaning [yellow], “fruit” for [fruit]
and “banana” for [yellow, fruit]. When there are other objects in the world that are also [yellow] or [fruit],
the words “yellow” and “fruit” will win the competition over “banana” because they are used more often.
But in natural languages, different perspectives on the same object such as “yellow” and “banana” are
clearly not competing but instead contribute richness. The model presented in this article does not have
a bias toward one-to-one mappings between features and forms – words acquired by the agents can have
any number of features associated to them. And pairs of words that share features such as “yellow” and
“banana” do not compete because they are successfully used in different communicative situations. Finally,
we showed that structure in the world and not the model itself, biases the structure of language and the
specificity of words.

Although there is clear value in investigating the emergence of communication systems in simulated
environments, we opted for an experimental set-up using situated robots. Presenting physical robots with
a nontrivial communicative task in a rich and open-ended world prevented us from making unrealistic
assumptions that were required in other models. For example, common scaffolding techniques such as
direct meaning transfer between agents, or pre-conceptualized meanings, are not possible when robotic
agents perceive real-world objects with initially unknown properties through cameras. Furthermore, not
only the exponential uncertainty but also the complexity of our robotic set-up forced us to endow the agents
with more flexible meaning representations and learning mechanisms. Both robots perceive the same scene
from different angles so they can have drastically different views of the same object (for example the
red block in Figure 3 has a much smaller width for robot A (obj-506) than for robot B (obj-527)).
This makes guessing the meaning of a novel word even more difficult, because the intended meaning of
the speaker might not even be among the different hypotheses constructed by the hearer. We argue that
instead of trying to identify the meaning of a word by enumerating possible meanings, learners have to
make an initial and necessarily uncertain representation that becomes refined over time. We showed that
this actually happens in our model – different agents associate very different sets of features to the same
words in the early interactions and then gradually reshape word meanings to reach coherence.

This “shaping of meanings” may make our model appear to be yet another variant of the cross-situational
learning techniques as discussed above. But again we want to make very clear that there is a fundamental
difference between structured (sets of features) and atomic (single feature) word meaning. We are not aware
of any cross-situational learning model that allows meaning to be non-atomic or otherwise coping with
exponential uncertainty. Smith et al. [2006] write: “Firstly, and most importantly, we have considered both
words and meanings to be unstructured atomic entities” (p. 41). Furthermore, the agents in our language
game experiments give each other non-linguistic corrective feedback, i.e. the speaker either confirms that
the topic pointed at by the hearer was intended or points to the right topic. Lieven [1994] has shown that
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children are able to learn many, and sometimes all, of their words without such social scaffolds. Vogt and
Coumans [2003] have demonstrated that more natural “selfish games” which don’t involve such a feedback
are more difficult, albeit viable when tackled with cross-situational learning techniques. We did not test
our model in such kind of interaction scenarios, but we speculate that the uncertainty stemming from
missing feedback is of a lesser magnitude than the one resulting from exponentially scaling hypothesis
spaces.

Finally, we want to clear some potential misunderstandings. First, we are not unsympathetic to the
idea of word learning constraints, but we believe that constraints ony seem crucial when word learning is
viewed as mapping. In this article we tried to show that by trading the mapping view for a more organic,
flexible approach to word learning the constraints become less necessary. Second, some developmental
psychologists emphasize human proficiency in interpreting the intentions of others [Tomasello, 2001] and
our endowment with a theory of mind [Bloom, 2000] as main forces in word leaning. While being supportive
of these ideas and even taking some for granted in our experimental set-up, it is important to understand
that intention reading is not telepathy. These abilities might help in dealing with referential uncertainty,
but they don’t entirely solve the problem. Third, we do not take a position regarding the relation between
the terms “word meaning” and “concept”. Some researchers use these synonymously [Bloom, 2000], others
advocate that they cannot be one and the same [Levinson, 2001]. In this experiment we did not investigate
the subtle interplay between language, cognition and conceptual development but instead implemented a
straightforward process from sensory experiences of objects to feature sets. This leads to the last point:
since in our model agents have no other task but communicating, and therefore have no other internal
representations beside word meanings, we cannot make any claims (pro or contra) regarding Whorf’s thesis
[Whorf and Carroll, 1956].
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