
A Vision Based System for Goal-Directed
Obstacle Avoidance used in the RC’03 Obstacle

Avoidance Challenge

Jan Hoffmann, Matthias Jüngel, and Martin Lötzsch

Institut für Informatik, LFG Künstliche Intelligenz, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany, http://www.aiboteamhumboldt.com

Abstract. We present a complete system for obstacle avoidance for a
mobile robot. It was used in the RoboCup 2003 obstacle avoidance chal-
lenge in the Sony Four Legged League. The system enables the robot to
detect unknown obstacles and reliably avoid them while advancing to-
ward a target. It uses monocular vision data with a limited field of view.
Obstacles are detected on a level surface of known color(s). A radial
model is constructed from the detected obstacles giving the robot a rep-
resentation of its surroundings that integrates both current and recent
vision information. Sectors of the model currently outside the current
field of view of the robot are updated using odometry. Ways of using
this model to achieve accurate and fast obstacle avoidance in a dynamic
environment are presented and evaluated. The system proved highly suc-
cessful by winning the obstacle avoidance challenge and was also used in
the RoboCup championship games.

1 Introduction

1.1 Related Work

Obstacle avoidance is often achieved by direct sensing of the environment. Pano-
ramic sensors such as omni-vision cameras and laser range finders are commonly
used in the RoboCup domain [1, 10]. Using these sensors, a full panoramic view
is always available thus greatly simplifying the task of obstacle avoidance. Free
space is usually associated with green (i.e. floor color), whereas non-green col-
ored pixels are associated with obstacles (see introduction of [5] for an overview
of panoramic vision systems).

In the case of the Sony League, a camera with a limited field of view is used.
As a basis for obstacle avoidance, a radial model of the robot’s environment needs
to be maintained. In such a model, current vision data is integrated with recent
vision data. Recently presented work by Scott Lensor and Manuela Veloso show
how such a model is constructed (“visual sonar”, [5]). The approach to obstacle
detection and obstacle modeling used by the GermanTeam in the RoboCup
challenge turned out to be similar to this concept. The contribution of this
papers is on how such a model can be used to achieve goal-directed obstacle
avoidance. Potential field approaches [4] were not considered because, on the one



2

Obstacles
Percept

Obstacles
Model

Obstacle Detection
(Vision)

Obstacle 
Modeling

Obstacle Avoidance
(Control)

Camera
Image

Motion
Commands

Fig. 1. Information processing in the obstacle avoidance system.

hand, the robot’s environment changes rapidly which makes it hard to manage
a global world model used for path planning. On the other hand, the static part
of the environment is simple and elaborate path planning is not necessary. A
comparative study of path planning and obstacle avoidance algorithms is given
in [7]. Many of these algorithms work well in simulation but are difficult to
implement in situations where information about the robot’s surroundings are
highly uncertain. We therefore decided on using a rather simplistic algorithm
which can be summarized as follows: walk towards the goal - if there is an
obstacle, cling to it and walk around it until it is circumvented - continue towards
the goal.

1.2 Preliminary Experiments

Two preliminary experiments are described here to outline what can and what
cannot be achieved using even simple approaches and to motivate the use of the
later presented system.

Simple obstacle avoidance using minimal sensor data. For initial testing and
benchmarking, a behavior similar to that of a 2nd order Braitenberg vehicle was
implemented (light seeker/-avoider, [2]). It makes use of the color coding of the
robot’s environment: unoccupied floor (i.e. free space) on a soccer field is green
while obstacles are colors other than green. In analogy to the light sensors of
the Braitenberg vehicle, the camera image was divided in two halves. For each
half, the number of green pixels (i.e. floor pixels) is calculated and normalized to
the total number of green pixels in the camera image. The camera itself points
slightly below the horizon to make sure that the camera is pointed (mostly) at
the floor. The robot itself moves forward at a constant speed. Depending on the
amount of floor colored pixels encountered in the left or right half, the robot
turns towards the direction where there is more free space while still moving
forward. Such a behavior lets the robot wander about the field aimlessly while
avoiding obstacles (such as field borders, other robots, people’s feet). At times,
however, it cannot turn quick enough to avoid running into an obstacle.

Adding the distance sensor. The one-dimensional distance sensor (infra red)
mounted in the robot’s head was used to control the speed of the robot. The
robot moves forward at full speed if the distance measured equals the distance
to the ground (keeping in mind that the robot’s head is pointed at the ground).
For distances smaller or greater the robot slows down and even backs off. By also
slowing down when the measured distance becomes greater than the assumed



3

distance to the ground, falling off ledges can be avoided. We were able to have
the robot wander about on a table top, avoid obstacles on the table and to stay
clear of the table’s edge. Adding this control enables the robot to stop in its
track when it happens to come too close to an object (which is often the case
when turning). It did, however, have problems with small objects because the
1D distance sensor would miss them.

The previous examples show the limit of what can be achieved by simple sen-
sor data based, reactive behaviors. Creating a model of the robot’s surroundings
is useful as it gives the robot information of what it has recently seen and it can
help to avoid small obstacles (e.g. the leg of a chair) that the robot’s distance
sensor is currently missing but has detected recently.

The following paragraphs describe the obstacle avoidance system used by the
GermanTeam in the RoboCup obstacle avoidance challenge and the actual games
(see also fig. 1). The goal was to find an obstacle avoidance solution best suited
for the demands of the dynamic RoboCup domain. This implies that obstacle
avoidance is one important task among others the robot has to perform during
the game.

2 Obstacle Avoidance System

The following sections will describe obstacle detection, obstacle modeling, and
obstacle avoidance behavior. A Sony Aibo ERS210(A) robot was used in the
experiments. The robot has a 400 MHz MIPS processor and a camera delivering
YUV image with a resolution of 172x144 (8 bits per channel). A Monte Carlo
localization was used [9]; other modules not covered here such as walking engine,
etc. are described in more detail in the GermanTeam 2003 team description and
team report [8].

2.1 Obstacle Detection

Image processing yields what we call a percept. A percept contains information
retrieved from the camera image about detected objects or features later used
in the modeling modules. A percept only represents the information that was
extracted from the current image. No long-term knowledge is stored in a percept.

The obstacles percept is a set of lines on the ground that represents the free
space in front of the robot in the direction the robot is currently pointing its
camera. Each line is described by a near point and a far point on the ground,
relative to the robot. The lines in the percept describe segments of ground colored
lines in the image projected to the ground. For each far point, information about
whether or not the point was on the image border is also stored.

To generate this percept, the image is being scanned along a grid of lines
arranged perpendicular to the horizon. The grid lines have a spacing of 4◦. They
are subdivided into segments using a simple threshold edge detection algorithm.
The average color of each segment is assigned to a color class based on a color
look-up table. This color table is usually created manually (algorithms that



4

a) b)

Fig. 2. Obstacle detection. a) White, green and unclassified segments of the scan lines.
b) Green lines: The obstacles percept is the conjunction of close green segments.

automate this process and allow for real-time adaptation exist [3, 6]). For each
scan line the bottom most ground colored segment is determined. If this ground
colored segment meets the bottom of the image, the starting point and the end
point of the segment are transformed from the image coordinate system into
the robot coordinate system and stored in the obstacles percept; if no pixel of
the ground color was detected in a scan line, the point at the bottom of the
line is transformed and the near point and the far point of the percept become
identical.

Small gaps between two ground colored segments of a scan line are ignored to
assure robustness against sensor noise and to assure that field lines are not inter-
preted as obstacles. In such a case two neighboring segments are concatenated.
The size limit for such gaps is 4 times the width of a field line in the image. This
width is a function of the position of the field line in the camera image and the
current direction of view of the camera. Figure 2 shows how different parts of
scan lines are used to generate obstacles percepts.

The different kinds of information about obstacles in the robot’s field of view
that can be deduced from the obstacle percept are illustrated in fig. 3.

2.2 Obstacle Model

The obstacle model described here is tailored to the task of local obstacle avoid-
ance in a dynamic environment. Local obstacle avoidance is achieved using the
obstacle model’s analysis functions described below. The assumption was made
that some high level controller performs path planning to guide the robot glob-
ally. Certain global set ups will cause the described algorithm to fail. This,
however, is tolerable and that this is a different type of problem that needs to
be dealt with by higher levels of action planning. This work therefore concen-
trates on a method to reliably steer the robot clear of obstacles while changing
its course as little as possible.

In the model, a radial representation of the robot’s surroundings is stored
in a “visual sonar” [5]. The model is inspired by the sensor data produced by
panoramic sensors such as 360◦ laser range finders and omni-vision cameras.
In this model, free space in a certain direction θ is stored. θ is divided into n
discrete sectors (“micro sectors”).



5

dθ, n+1 dθ, n dθ, n+1=dθ, n dθ, n+1 dθ, n

dθ, n+1 dθ, ndθ, n+1dθ, ndθ, n+1dθ, n

obstacle
obstacle

dθ, n+1=dθ, n dθ, n+1=dθ, n dθ, n+1=dθ, n

dθ, n+1=dθ, ndθ, n+1dθ, n dθ, n+1dθ, n

hmin
hmin hmin

dmin dmindmin

hmin
hmin hmin

dmin dmindmin

Fig. 3. Updating the obstacle model. The above diagrams illustrate the way that the
entry in the obstacle model for a given sector θ is updated using vision information. dn

denotes the information stored in the model and dn+1 the updated data. Three cases
of vision data are shown (columns): 1) some free space in front of the robot but also
an obstacle at a certain distance (left column), 2) no obstacle within the field of view
(middle column), and 3) totally obstructed view (right column). Cases in which an
obstacle is detected and also some free space behind the obstacle are treated as 3).
The lower two rows illustrate the information that can be derived if the distance stored
in the model lies between the robot and the bottom edge of the viewing cone. By
assuming that obstacles are of a minimum height hmin, free space can be inferred even
for regions that are not visible.



6

a) b) c) d)

Fig. 4. Illustration of the obstacle model. The actual number of sectors is greater than
shown here, it was reduced for illustration purposes. Fig. 5 shows the actual obstacle
model used.
a) The robot is at the center; dashed lines show sectors; solid orange lines (dark) show
the free space around the robot; light grey lines are used if there is no information about
free space in a sector (in this examples, the robot has little knowledge about the sectors
behind it); small circles denote representatives. b) illustrates how the model is updated
using odometry when the robot is moving. Updated representatives are shown as dark
circles dots. Note that one of the right sectors does not contain a representative after
updating, hence the free distance is reset to infinity. c) and d) illustration of analysis
function used when determining the free space in front of the robot and to its side
(important when the robot is turning).

If new vision information is received, the corresponding sectors are updated.
Sectors that are not in the visual field are updated using odometry, enabling the
robot to “remember” what it has recently seen. If a sector has not been updated
by vision for a time period greater than treset, the range stored in the sector is
reset to “unknown”.

Micro sectors are 5◦ wide. Due to imperfect image processing the model
is often patchy, e.g. an obstacle is detected partially and some sectors can be
updated while others may not receive new information. Instead of using the
model as such, analysis functions that compute information from the model are
used. These functions produce high level output such as “how much free space is
(in the corridor) in front of the robot” which is then used by the robot’s behavior
layers. These functions usually analyze a number of micro sectors. The sector
with the smallest free space associated to it corresponds to the greatest danger
for the robot (i.e. the closest object). In most analysis functions this sector is the
most important overruling all other sectors analyzed. In the above example, the
sector in the corridor containing the smallest free space is used to calculate the
free space in front of the robot. Using analysis functions makes using the model
robust against errors introduced by imperfect sensor information. It also offers
intuitive ways to access the data stored in the model from the control levels of
the robot.

In addition to the free space, for each sector a vector pointing to where the
obstacle was last detected (in that sector) is stored. This is called a representative
for that sector. Storing it is necessary for updating the model using odometry.



7

Fig. 4 illustrates the obstacle model. The following paragraphs will explain in
more detail how the model is updated and what analysis function are.

Update Using Vision Data The image is analyzed as described in 2.1. Obstacle
percepts are used to update the obstacle model. The detected free space for
each of the vertical scan lines is first associated to the sectors of the obstacle
model. Then the percept is compared to the free range stored for a sector; fig. 3
illustrates the possible cases for updating the information stored in a sector θ.

If the distance in a sector was updated using vision information, the obstacle
percept is also stored in the representative of that sector. The necessity to store
this information is explained in the following paragraphs.

Update Using Odometry. Sectors that are not in the visual field of the robot
(or where image processing did not yield usable information) are updated using
odometry. The representative of a sector is moved (translated and rotated) ac-
cording to the robot’s movement. The updated representative is then remapped
to the - possibly new - sector. It is then treated like an obstacle detected by
vision and the free space is re-calculated. In case more than one representatives
are moved into one sector, the representative closest is used for calculating the
free space (see Fig.4 b. for an example). If a representative is removed from a
sector and no other representative ends up in that sector, the free space of that
sector is reset to infinity). The model quality deteriorates when representatives
are mapped to the same sector and other sectors are left empty. While this did
not lead to any problems in our experiments and the way we were able to use
the model, we would like to point out two ways to compensate for the “loss” of
representatives:

1. Instead of storing just one representative per sector, any number of rep-
resentatives could be stored per sector. This only lessens the effect and shifts it
to a smaller scale.

2. Another approach was presented by [5] which is based on a similar radial
obstacle model. Whenever a gap between two formerly adjacent sectors of the
obstacle model occurs, one or more new points are created in-between the two
by linear interpolation. This completely eliminates the deterioration effect but
also makes the assumption that two adjacent obstacle representatives belong to
the same obstacle which is not always the case.

The described effect was observable in some experiments and could easily be
reproduced in simulation, but since no significant effect on real world perfor-
mance was observed it was disregarded.

Analysis Functions. As explained above, the model is accessed by means of
analysis functions. The micro sectors used to construct the model are of such
small dimensions that they are not of any use for the robot’s behavior control
module. The way we model robot behavior, more abstract information is needed,
such as “There is an obstacle in the direction I’m moving in at distance x” or
“In the front left hemisphere there is more free space than in the front right.” Of
interest is usually the obstacle closest to a the robot in a given area relative to



8

Fig. 5. Left. Camera image with superimposed obstacle percepts and obstacle model
(projected onto the floor plane) Right. Actual obstacle model.

the robot. In the following paragraphs, some analysis functions that were used
for obstacle avoidance and in RoboCup games are described. Other possible
function exist for different kind of applications which are not covered here.

Macro sector sect(θ, ∆θ) This function is used to find out how much free space
there is in a (macro) sector in direction θ an of width ∆θ. Each sector within
the macro sector is analyzed and the function returns the smallest distance in
that macro sector. This can be used to construct a simple obstacle avoidance
behavior. The free space in two segments (“front-left”, −22, 5◦ ± 22, 5◦ and
“front-right”, +22, 5◦ ± 22, 5◦) is compared and the behavior lets the robot
turn in the direction where there is more free space.

Corridor corr(θ, ∆d) If the robot is to pass through a narrow opening, e.g.
between two opponent robots, the free space not in a (macro) sector but in
a corridor of a certain width is of interest. Usually, a corridor of about twice
the width of the robot is considered safe for passing.

Free Space for Turning corr(θ = ±90◦,∆d =length of robot) When turn-
ing, the robot is in danger of running into obstacles that are to its left or
right and thereby currently invisible. These areas can be checked for ob-
stacles using this function. If obstacles are found in the model, the turning
motion is canceled. (Note that this is a special case of the corridor function
described above.)

Next Free Angle f(θ) This functions was used in RoboCup games to deter-
mine which direction the robot should shoot the ball. The robot would only
shoot the ball in the direction of the goal if no obstacles were in the way.
Otherwise the robot would turn towards the “next free angle” and perform
the shot.

2.3 Ostacle Avoidance

The obstacle avoidance behavior used in the challenge is described here. The way
the obstacle model was used in the championship games is also touched briefly.

Goal-directed obstacle avoidance. The following three states were used to achieve
goal-directed obstacle avoidance (see also fig. 6):



9

C. Avoid 
obstacle
(Cling to

wall)

B. Avoid 
far away
obstacles

A. Head 
for target
position

d > 70 cm
or target 

within reach

d < 75 cm

d < 70 cm

No free corridor in
the direction of the
goal, i.e. d < 25 cm

d < 20cm

d > 75 cm d > 25 cm

d > 75 cm

Fig. 6. This illustrates the states used in the obstacle avoidance. d denotes the free
space in the corridor in the direction of the target position. Hystereses are used to
avoid oscilations between states.

A. Head for target position. If there is more than 70 cm of free space d
in the corridor in the direction of the target (which is determined using the
“corridor”-analysis function), the robot turns in that direction. It avoids run-
ning into obstacles while turning using the “free space for turning”-analysis
function. The forward speed of the robot is determined by the amount of
turning necessary: if little turning is necessary, the forward speed is maximal,
if it has to turn a lot, the speed is throttled.

B. Avoid far away obstacles. If the free distance d is less than 70 cm, the
robot turns away from the obstacle using the “Next free angle” analysis
function.

C. Avoid close obstacles. If obstacles are close, the robot clings to the obsta-
cle and performs a wall following behavior. This is achieved in the following
way: the robot tries to turn toward the direction of the target. The “free
space for turning”-analysis function is used to keep it from running into the
obstacle, causing the robot to closely cling to the obstacle. As soon as the ob-
stacle is circumvented and the corridor to the target is free, the robot turns
toward the target. The forward speed of the robot is throttled according to
how close obstacles are in the direction the robot is currently moving in. If
obstacles in that direction become closer than a threshold of 5 cm, the robot
backs off.

Obstacle avoidance in RoboCup games. In the championship games, obstacle
avoidance was also used. It was used in conjunction with a force field approach
to allow for various control systems to run in parallel. The obstacle model was
also used for shot selection. When the robot was close to the ball, the model
was used to check if there were obstacles in the intended direction of the shot.
If there were obstacles in the way, countermeasures were taken (such as turning
away from the obstacle).

Scanning motion of the head. In the challenge, the robot performed a scanning
motion with its head. This gives the robot effective knowledge about its vicinity
(as opposed to just its field of view), allowing it to better decide where it should



10

Fig. 7. The above image was extracted from a video of the obstacle avoidance challenge
run of the GermanTeam. The robot’s path is shown. It is noteworthy that the corridor
between the two robots new the goal is only about 3 times wider than the robot’s
lateral dimensions and about 1.5 times wider as its length.

head. The scanning motion and the obstacle avoidance behavior were fine tuned
to allow for a wide scan area while making sure that the area in front of the
robot was scanned frequently enough for it to not run into obstacles.
In the actual RoboCup games, the camera of the robot is needed to look at the
ball most of the time. Therefore, very little dedicated scanning motions were
possible giving the robot a slightly worse model of its surroundings.

3 Application and Performance

RoboCup 2003 Technical Challenge. In the obstacle avoidance challenge, a robot
had to walk as quickly as possible from one goal to the other without running
into any of the other 7 robots placed on the field. The other robots did not move
and were placed at the same position for all contestants. The algorithm used was
only slightly altered from the one used in the actual, dynamic game situations.
As can be seen from the results (table 1), the system used enabled the robot
to move quickly and safely across the field. Avoidance is highly accurate: on its
path, the robot came very close to obstacles (as close as 2 cm to touching the
obstacles) but did not touch any of them. Very little time is lost for scanning the
environment (as the obstacle model is updated continuously while the robot’s
head is scanning the surroundings) enabling the robot to move at a high speed
without stopping. The system used in the challenge was not optimized for speed
and only utilized about 70% of the robot’s top speed. Furthermore, some minor
glitches in the behavior code caused the robot to not move as fast as possible.

RoboCup 2003 championship games. The obstacle model was used for obstacle
avoidance and for shot selection in the games. An improvement in game play
was noticeable when obstacle avoidance was used. In several instances during the
games, situations in which the robot would otherwise have run into an opponent



11

Rank Team Collisions Zone Zone Zone Zone Zone Goal
A B C D E (Total Time)

1 GermanTeam 0 6.31s 10.16s 16.52s 20.73s 29.83s 35.76s

2 UT Austin 0 10.74s 20.81s 32.82s 41.11s 59.31s 63.38s

3 ARAIBO 0 10.71s 32.20s 47.20s 72.22s 80.53s 104.45s

4 UTS Unleashed 0 15.99s 62.49s 73.13s 83.24s 94.46s 108.72s

5 ASURA 1 10.35 17.19s 24.81s 30.92s 40.51s 87.22s

6 rUNSWift 1 9.95 15.09s 27.83s 36.75s 46.35s 100.09s

7 Baby Tigers 2 15.01s 30.22s 50.41s 70.23s 94.32s 141.53s

8 Team Sweden 2 10.97s 19.82s 31.06s 41.32s 53.63s 179.97s

9 NUbots 1 5.89s 13.56 36.86s 45.69s 54.81s (not reached)

10 UW Huskies 1 45.05s 55.66s 59.12s 62.53s 72.44s (not reached)

Table 1. RoboCup World Cup 2003 obstacle avoidance challenge results. Only the
results of the first of the 24 participating teams are shown. Note that some of the
teams did not reach the goal at all. The ranking is based on speed and the number of
collisions.

it was able to steer around it. In addition to using the ego-centric obstacle model,
communicated global position information was used to make sure that no two
robots of our team tried to reach the same target position. Shot selection did not
yield a positive effect mostly because realigning the robot to shoot at a better
angle took too long. By the time the robot had turned, opponent robots would
have closed in on it rendering the desired kick useless.

Issues. Small errors in odometry and image processing have, of course, a neg-
ative effect on the model. Since no global model is produced and the model is
updated frequently, no negative effects on performance were observed. Bad color
calibration, however, can keep the robot from walking anywhere if it “sees” ob-
stacles all around it. The models accuracy is diminished by the fact the robots
camera shakes quite a bit when the robot is walking. Therefore, the absolute
height of the camera and its orientation differ from the assumed parameters
which are calculated using forward kinematics.

4 Conclusion

The presented system enables the robot to reliably circumvent obstacles and
reach its goal quickly. The system was developed for use in highly dynamic
environments and limits itself to local obstacle avoidance.

In the RoboCup 2003 obstacle avoidance challenge, the robot reached the
goal almost twice as fast as the runner up without hitting any obstacles. In the
challenge, the system was not used to its full potential and a further increase
in speed is well within reach. An improvement in game play in the RoboCup
championship games was observed although this is very hard to quantify and



12

depended largely on the opponent. The GermanTeam reached the quarter final
of the competition.

Although the presented system is based on vision data and was optimized
for the application in the RoboCup domain, integration of other sensor data is
easily done (such as the Aibo’s infra red distance sensor). Using the system in
other environments can be achieved by adjusting the domain specific heuristics
in the obstacle detection module.

5 Acknowledgments

The project is funded by Deutsche Forschungsgemeinschaft, Schwerpunktpro-
gramm “Kooperierende Teams mobiler Roboter in dynamischen Umgebungen”
(Cooperative Teams of Mobile Robots in Dynamic Environments).

Program code was developed by the GermanTeam, a collaboration of the
Humboldt University Berlin, University of Bremen, University of Dortmund, and
the Technical University of Darmstadt. Source code is available for download at
http://www.robocup.de/germanteam.

References

1. R. Benosman and S. B. K. (editors). Panoramic Vision: Sensors, Theory, and
Applications. Springer, 2001.

2. V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, 1984.
3. M. Jüngel, J. Hoffmann, and M. Lötzsch. A real-time auto-adjusting vision sys-

tem for robotic soccer. In 7th International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelli-
gence. Springer, 2004. to appear.

4. O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
The International Journal of Robotics Research, 5(1), 1986.

5. S. Lenser and M. Veloso. Visual Sonar: Fast Obstacle Avoidance Using Monocular
Vision. In Proceedings of IROS’03, 2003.

6. G. Mayer, H. Utz, and G. Kraetzschmar. Towards autonomous vision self-
calibration for soccer robots. In Proceedings of the 2002 IEEE/RSJ Intl. Con-
ference on Intelligent Robots and Systems, 2002.

7. H. Noborio, K. Fujimura, and Y. Horiuchi. A Comparative Study of Sensor-Based
Path-Planning Algorithms in an Unknown Maze. pages 917–924, 2000.

8. T. Röfer, I. Dahm, U. Düffert, J. Hoffmann, M. Jüngel, M. Kallnik, M. Lötzsch,
M. Risler, M. Stelzer, and J. Ziegler. GermanTeam 2003. In 7th International
Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences),
Lecture Notes in Artificial Intelligence. Springer, 2004. to appear. more detailed
in http://www.robocup.de/germanteam/GT2003.pdf.

9. T. Röfer and M. Jüngel. Vision-Based Fast and Reactive Monte-Carlo Localization.
IEEE International Conference on Robotics and Automation, 2003.

10. T. Weigel, A. Kleiner, F. Diesch, M. Dietl, J.-S. Gutmann, B. Nebel, P. Stiegeler,
and B. Szerbakowski. CS Freiburg 2001. 2003.


