
Understanding the Dynamics of Complex Lisp Programs

Martin Loetzsch
(AI-Lab, Vrije Universiteit Brussel, Belgium

martin.loetzsch@gmail.com)

Joris Bleys
(AI-Lab, Vrije Universiteit Brussel, Belgium

jorisb@arti.vub.ac.be)

Pieter Wellens
(AI-Lab, Vrije Universiteit Brussel, Belgium

pieter@arti.vub.ac.be)

Abstract: Recent advances in web technologies and the availability of robust Lisp
libraries supporting them have made it possible to think of new ways of understanding
and debugging large applications. In this paper, we will discuss two basic ideas for
assessing and verifying the behaviour of Lisp programs. First, we propose to use a web
browser for graphically displaying debug output in a similar but more versatile way
as the Lisp listener is normally used to print output traces. And second, we propose
a method for creating HTML visualisations of complex data and control structures
that don’t trade in level of detail for readability. We will introduce GTFL (a Graphical
Terminal For Lisp), which we have implemented based on these two ideas, and discuss
its applications.

1 Introduction

When the behaviour of a system is driven by unpredictable external data or when
it emerges from the interplay of many different processes and representations,
it is very hard to keep track of the underlying complex dynamics exhibited by
the system. Even when the behaviour is as expected it might be far from trivial
to understand or show why this is the case, or for example how it could be
further refined. Evidently, when the behaviour is not the desired one, it is usually
very hard to track down the parts of the systems that require modification to
yield more desired dynamics. Adding to the challenge is the fact that often some
subsystems can’t be tested in isolation because they are embedded in a recurrent
network of other processes and consequently the functioning of the system can
only be investigated as a whole. These sorts of difficulties in understanding the
underlying dynamics of complex code are a common problem in many areas of
computer science such as robotics, artificial intelligence and distributed systems.

Although everybody has their own favourite style of debugging we have ob-
served that most Lisp hackers use a combination of four major techniques for



analysing the behaviour of their programs. The first one, which we call the trac-
ing approach, consists of printing traces to the Lisp listener either by directly
adding print statements to the code or by using built-in trace facilities or other
custom mechanisms. The advantages of this technique are that (1) it is very
easy to do (and in fact this is what almost everybody who learns to program
starts with, for a review see [McCauley et al. 2008]) and (2) it allows to monitor
program execution at almost any level of detail (from very high-level dynamics
only to near-complete information). When the level of detail is high however,
the output rapidly becomes unmanageable. Furthermore, plain text in a Lisp
listener is not easy to read and can only be presented linearly which makes it
impractical for getting an overview of, or a ‘feeling’ for, the dynamics of the
system. And finally, changing the level of detail requires to comment out print
statements in the code (bad style) or to switch on and off tracing facilities.

A second method is to retrospectively analyse the state of a system by in-
specting Lisp objects – either using inspector tools of Lisp environments or by
directly calling chains of accessor functions on an object. Inspection has the ad-
vantage that it does not require to change or write any code and the complete
state of the object can be analysed. But inspection is only applicable to the final
results of a particular algorithm or program (except when using breakpoints).
In general, changes of data structures can’t be easily observed using inspection.
Additionally, it requires to have access to the problematic instance in question
and often it is unclear which one of the thousands of objects to inspect. Finally,
in order to query details of deeply hierarchical data structures, a programmer
needs to perform a high number of manual steps, which prevents inspection to
be useful in many cases.

Third, many Lisp implementations and development environments provide
mechanisms for manually stepping through code either by using the built in step
facilities or by invoking the stepper directly from the code. Control structures
can be traversed and function parameters, return values and local variables can
usually be further investigated with inspectors. This certainly is very helpful for
finding logical mistakes in small pieces of code such as sign errors, wrong loop
exit conditions and so forth, but in order to make use of stepping one has to
know which part of the code to look at. Stepping through a complete application
just for exploring its dynamics would take hours and is thus impracticable.

A last technique is to create visualisations, either within a custom GUI or
by using specialised graphics libraries (e.g. gnuplot). Visualisations are great
to get an intuition of an algorithm’s dynamics because our mind understands
graphical representations much better than text output, especially for numerical
data [Kosslyn 2006]. That’s why in areas such as robotics it is exceptional to
even write programs without having graphical means to verify that the system
behaves as expected (ideally even for each intermediate step). Visualisations are



costly, because it takes time to implement them, but they often pay off in the long
run when they can become an invaluable eye into the system’s internals. A clear
disadvantage is that visual representations only allow for a low to medium level of
detail: complex data structures have to be transformed into two-dimensional (or
sometimes 3D) representations, involving constraints such as available window
size and a required visual clarity so that the representation remains readable.
Furthermore, despite many recent developments in cross-platform GUI APIs,
there is none that really looks good and that easily works in all major CLs. And
unless the Lisp program in question already has a graphical user interface, there
is a lot of overhead in dealing with windows, menus and other UI elements, event
handling and the interaction with the actual code to monitor. This is usually
too much overhead when the goal is to ‘just draw something’. Additionally, Lisp
is often used for symbolic programming, which involves textual and hierarchical
data structures, which in turn are hard to visualise. Although virtually every
graphic library has means to display text on the screen, the responsibility for
arranging text blocks (estimating widths an heights of text areas depending on
available space, avoiding overlap, reflowing multi-line text) is usually in the hand
of the programmer.

We propose a novel technique for analysing and debugging code on the system
level, which combines many of the main advantages of the previously introduced
techniques, while at the same time removing some of their respective disadvan-
tages.

2 GTFL - A Graphical Terminal for Lisp

We propose the GTFL (a Graphical Terminal for Lisp) library as a tool aimed
at Lisp programmers that want to understand the dynamics of their code, es-
pecially when the program is too complex to debug by printing text traces to
the listener or by using inspection and stepping tools. GTFL runs on all major
CL implementations, is free (BSD-Style license) and its documentation together
with the source code can be found at [Loetzsch 2009].

GTFL is a terminal in the sense that content is pushed by a Lisp program
to a client and appears there in the same order as it was sent. What might be
surprising – but as will be shown has great consequences – the client is a HTML
page running in a web browser (see Figure 1). GTFL uses the Hunchentoot web
server [Weitz 2006] to deliver the client page and HT-AJAX [Marshak 2007] to
exchange requests and content between the client and the Lisp environment.
After installing GTFL (either by downloading it from [Loetzsch 2009] or via
asdf-install) and loading the library with asdf, the internal web server needs to
be started with:

(start-gtfl)



Figure 1: GTFL in action. A Lisp environment (left) has GTFL loaded and sends
output to the client. The client HTML page (right) shows the output as it is
sent.

The client HTML page is now accessible at http://localhost:8000 (a different
address and port can be specified as well). Since GTFL uses quite advanced web
technologies, we recommend to use a recent version of Safari, Firefox or Chrome.
The page is initially empty except for a small “reset” button. Sending output to
the client is quite simple (see also examples in Figure 1):

(gtfl-out (:p "hello " (:span :style "color:red;" "world!"))

(:p "a " (:b "second") " paragraph"))

The output immediately appears on the client page and looks like this:

hello world!

a second paragraph

The macro gtfl-out takes numbers of s-expressions as arguments and renders
them into actual HTML code using CL-WHO [Weitz 2003]. There are many
other Lisp libraries providing this functionality and in general web related Lisp
tools give users the freedom to use any of them, but we had to select one because
GTFL also provides tools for creating complex HTML constructs. CL-WHO was
our first choice because it seems to be one of the wider known ones and because
it doesn’t create intermediate structures at run-time, making it very efficient.
Behind the scenes, GTFL pushes the rendered HTML code sent by gtfl-out

on an internal ‘requests’ list. In the client page, a Javascript based event loop
uses Ajax calls to query that list on the Lisp side every 200 ms. Whenever there
is something new to display, it is sent to the client page as a response to such
an Ajax call.



With this basic ‘terminal’ functionality, GTFL can already be used for de-
bugging with the tracing technique described above. The user is only required to
change the relevant print statements in the code to gtfl-out calls. The major
advantage is that text can be displayed in different colors, a multitude of font
styles and sizes and with backgrounds or borders, which all help in making the
output much more readable than plain text.

Furthermore, GTFL is graphical because HTML is. In addition to the possi-
bilities of basic font formatting mentioned above, HTML tables and other block
elements can be used to structure data and to layout representations. Contem-
porary HTML rendering engines are extremely good in distributing the available
browser window width among recursively nested child elements (and in reflow-
ing the layout when the window size changes or when more data is added to the
page). A trivial example for this is:

(defparameter *text* "content that automatically adapts its width

according to the available space")

(gtfl-out

(:table :cellspacing "5" :cellpadding "5"

(:tr (:td :style "background-color:yellow" (princ *text*))

(:td :style "border:1px solid black" (princ *text*)))))

HTML style attributes are used to display *text* in different graphical styles
two times next to each other. More importantly, the HTML renderer removes
the burden of deciding how wide to draw the text blocks from the programmer:

Exploiting this versatility, GTFL contains functionality for drawing trees in
HTML. This is again a trivial example (for examples of ‘real’ trees see Figures
1 and 2):

(gtfl-out

(draw-node-with-children

(who-lambda (:div :style "border:1px solid #000"

(:b (princ *text*))))

(list (who-lambda (:div :style "border:1px dotted blue"



(:i (princ *text*))))

(who-lambda (:div :style "margin-top:10px;"

(princ *text*))))))

The result is this:

The function draw-node-with-children requires an anonymous function for
creating the content of a node and a list of such functions for drawing the chil-
dren. It creates a table that contains the node, horizontal and vertical lines
to the children, and the children themselves. In order to draw a complete tree,
the anonymous functions that draw the children use draw-node-with-children
again to draw their respective children, and so on. Consequently, using this func-
tionality requires writing a function that recursively creates the tree visualisation
while traversing the structure to be displayed. The web browser then takes care
of fitting the tree in the available space and of adjusting the width of the nodes
accordingly.

When the basic graphical capabilities of HTML are not sufficient for certain
visualisation purposes, SVG graphics or Flash animations can of course be also
sent to the GTFL client page. These features combined make GTFL a powerful
tool for visualising internals of a program. The main advantage over using a
real GUI is that programmers neither have to deal with windows, menus, event
handling etc. nor do they have to worry about the size and position of elements
on the screen.

But we believe the key feature of GTFL to be the way in which complex data
and control structures can be displayed: the level of detail of what is visualised
is not restricted by the size of the web browser window. The trick is to create
simplified visual representations of data that expand into a detailed version when
the user clicks on them and that collapse to their original state when clicked a
second time. A (minimal) example:

(gtfl-out

(:div :style "border:1px solid black;display:inline-block"

(make-expandable/collapsable-element

"id-1" "all-id-1"



(who2s

(:div

(make-expand/collapse-link "id-1" t nil "expand")

(:br) "overview version"))

(who2s

(:div

(make-expand/collapse-link "id-1" nil nil "collapse")

(:br) (:h3 "much more detailed version"))))))

A box such as on the left below appears. When the ’expand’ button is clicked,
a mode detailed version of the representation is shown instead:

→

The function make-expandable/collapsable-element that GTFL provides for
this kind of interactivity takes both the collapsed and expanded version as argu-
ments and stores them in a hash-table (in order to avoid computing HTML for
elements that never get expanded, closures can be used as well). The collapsed
version is initially sent to the client, and when the user clicks on the element the
expanded version is requested from the Lisp side using Ajax.

This principle can be applied recursively: a first visualisation shows the global
dynamics of an algorithm, and by further and further expanding parts of that
representation, more and more details are revealed. Using such expandable rep-
resentations is in a sense an advanced variant of the above-mentioned inspection
approach: already meaningful visual traces are sent to the terminal and help
getting an overview of what is going on in the system. When something in-
teresting or unexpected happens, the user can inspect more details of the inner
workings by progressively clicking through the created representations. Since the
initial representations of objects already contain some information about it, it
becomes much easier to decide which object to inspect and there are no issues of
accessing instances of intermediate processing results. This technique of course
requires some additional effort by the programmer. For all relevant data and
control structures, functions need to be written that turn them into expandable
HTML representations. But once such a set of visualisations exists, debugging
an application becomes less demanding.



Finally, GTFL provides functionality for defining client side Javascript and
CSS code fragments, for replacing and appending the content of existing HTML
elements, for resetting the client and for creating dynamically resizing visuali-
sations of s-expressions in HTML. These mechanisms are explained in detail at
[Loetzsch 2009]. In the next section we show how we applied GTFL in real-life
applications.

3 Applications

GTFL won’t be of great help for finding out why a program crashes – it is
instead useful for tracking down conceptual errors or for verifying the behaviour
of a system. For that purpose, the system is extensively applied in the VUB AI-
Lab and the Sony Computer Science Lab in Paris for doing research in linguistics,
robotics and emergent systems. Part of this work involves programming fairly
complex multi-agent simulations in Lisp, including mechanism for engaging in
social interactions, perception and conceptualisation of the world, production
and interpretation of utterances, diagnosis and repair of problems in cognitive
processing, and much more.

One aspect of this research is the Fluid Construction Grammar (FCG) frame-
work [Steels and de Beule 2006, de Beule and Steels 2006]. FCG is a unification-
based grammar formalism which uses feature structures for representing linguis-
tic knowledge, and it can apply the same linguistic rules in both parsing and
production. Constructing or interpreting utterances requires a successful chain
of applicable rules, which involves a large search process. The rules themselves
can become exceedingly complex and even seasoned FCG users are bound to
make mistakes in writing them. Combined with the fact that a unification-based
formalism is not very forgiving when encountering small errors in the linguistic
rules, one typo in a rule can cause the complete search to divert and explode.
Consequently, when the FCG engine fails to produce a desired result, there are
a multitude of potential reasons for that. In earlier versions of FCG we tackled
the problem by printing out verbose debug traces of the rule application process,
resulting often in hundreds of pages of output that had to be skimmed through
in order to find the source of the problem.

The use of GTFL in FCG changed the way users and programmers interact
with it, not only making the experience richer, but also more trouble-free. Some
dynamics that were previously mystifying and impenetrable have cleared up. As
a welcome side-effect newcomers to the team grasp the material at a considerably
faster speed because of the way they can interact with and gradually investigate
the dynamics. We display the crucial data structures such as the search tree,
the remaining search queue, the applied rules, the resulting structure. These



Figure 2: An example of GTFL in use. This debug trace was created by the
Fluid Construction Grammar framework while parsing the utterance “I swept
the dust”. The trace shows the set of rules that was tried, the rules that were
eventually applied, the search tree that was built for finding out which rules to
apply in which order, the resulting linguistic structure and more. Each of these
elements is recursively expandable so that FCG developers have access to every
little detail of the parsing process when they need to.

elements already give a clarifying overview of what happened in general. But if
required, each of these elements can be recursively expanded to reveal essentially
all internals of the process. Such traces allow FCG developers to debug and make
sense of the formalism itself and they help FCG users to see the effects of their
linguistic rules by having access to all details of the parsing process without
losing a general overview. As can be seen in Figure 2, the complete trace fits
into one browser window.

This experience of interacting with data and the flow of the dynamics of a
program is best captured with some hands-on experience. For this purpose, two
examples of FCG debug traces can be found at:



http://martin-loetzsch.de/gtfl/application-example-1.html

http://martin-loetzsch.de/gtfl/application-example-2.html

We strongly encourage readers to take a look and play around with them since
they convey the power of this approach better than words can.

4 Conclusion

Only a few years ago it would not have been feasible to implement a system such
as described in this paper. Although our present-day web standards are much
older, they were only poorly supported making it strenuous for web developers to
ensure the interoperability of their web sites in different browsers. Fortunately,
things have improved. Today valid XHTML+CSS code is properly interpreted by
a variety of browsers and AJAX has become an ubiquitous technology that just
works. Particularly impressive is the way contemporary HTML rendering engines
are able to layout (and reflow) heavily nested HTML constructs with incredible
speed and perfectly looking in almost all cases. Finally, with Hunchentoot there
is now a reliable web server that runs on a big enough number of Lisps.

All these advances in technology have made it possible to rethink the way
we want to debug Lisp programs and two very simple yet very powerful ideas
have come out (and have been implemented in the GTFL system). The first idea
is to use the web browser instead of the Lisp listener as a terminal for tracing
internals of a program. In GTFL, adding some content to the client page is as
simple as printing some information to the listener. The advantage is that one can
use different colors, text styles, backgrounds and many other graphical means to
make representations more readable than if there were printed as plain text. And
the second idea is to not abandon parts of debug information just for the sake of
making the size of trace outputs manageable but to create visual representations
that reveal all details in (recursively) expandable HTML elements. This makes
it possible to fit tracing output within a single browser page while still allowing
to access all internals of the program when needed.

GTFL can by no means replace any of the debugging techniques mentioned in
the introduction. When used in combination with these techniques we strongly
believe it will speed up the process of unraveling the behaviour of a complex
program.

Acknowledgements: GTFL was initially developed as part of the Babel2
framework [Loetzsch et al. 2008], to which many members of the VUB AI-Lab
and of the Sony CSL Paris have made contributions. We thank Pascal Costanza
for very valuable comments on earlier versions of our paper. This research was
funded by the EU FP7 Alear project.



References

[de Beule and Steels 2006] De Beule, J., Steels, L.: “Hierarchy in fluid construction
grammar”. In KI 2005: Advances In Artificial Intelligence. Proceedings of the 28th
German Conference on AI, vol. 3698 of LNCS, Springer, 1–15.

[Kosslyn 2006] Kosslyn, S.M.: “Graph Design for the Eye and Mind”. Oxford Univer-
sity Press, 2006.

[Loetzsch 2009] Loetzsch, M.: “GTFL - A graphical terminal for Lisp”. http://
martin-loetzsch.de/gtfl/

[Loetzsch et al. 2008] Loetzsch, M., Wellens, P., De Beule, J., Bleys, J., van Trijp, R.:
“The Babel2 Manual”. AI-Memo 01-08, AI-Lab VUB, Brussels, Belgium.

[Marshak 2007] Marshak, U.: “HT-AJAX - AJAX framework for Hunchentoot”. http:
//common-lisp.net/project/ht-ajax/ht-ajax.html

[McCauley et al. 2008] McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L.,
Simon, B., Thomas, L., Zander, C.: “Debugging: a review of the literature from an
educational perspective”. Computer Science Education 18, 2 (2008), 67–92.

[Steels and de Beule 2006] Steels, L., de Beule, J.: “Unify and Merge in Fluid Con-
struction Grammar”. In Symbol Grounding and Beyond: Proceedings of the Third
International Workshop on the Emergence and Evolution of Linguistic Communi-
cation, EELC 2006, vol. 4211 of LNCS, Springer, 197–223

[Weitz 2003] Weitz, E.: “CL-WHO - Yet another Lisp markup language”. http://www.
weitz.de/cl-who/

[Weitz 2006] Weitz, E.: “HUNCHENTOOT - The Common Lisp web server formerly
known as TBNL”. http://www.weitz.de/hunchentoot/


